 Curve 分布式存储设计Curve 分布式存储设计 程义 — Curve Maintainer XAgenda 第二 第三 第四 第一 Curve的由来 Curve的设计目标 Curve块存储 和 Curve文件存储 Curve社区Curve的由来 1. 代码复杂/代码量大 2. 运维难度高 3. 无法满足高的性能需求Curve的设计目标 1. Curve云原生软件定义存储 2. Curve块存储 Curve块存储 3. Curve文件存储 4. 高性能,易运维,云原生Curve块存储 1. 高性能分布式共享数据库场景 2. Curve块存储提供底层分布式共享存储 3. Polardb for PostgreSQL提供上层高性能数 据库服务 4. 性能测试 1. benchmarkSQL 每分钟事务数提升39% 2. pgbench 延迟降低21% TPS提升26% 研究现状Curve块存储 研究现状Curve块存储 1. 分布式块存储服务 2. KVM块存储服务 3. iSCSI协议 4. 容器云块存储(CSI) 应用场景Curve块存储 1. 高可用性/高可靠性 (易运维) 2. RAFT一致性协议 3. CopySet分配算法 4. 拓扑结构 5. 高性能 6. chunkfilepool (降低写放大) 7. data stripe (增大并发) 8. zerocopy0 码力 | 20 页 | 4.13 MB | 6 月前3 Curve 分布式存储设计Curve 分布式存储设计 程义 — Curve Maintainer XAgenda 第二 第三 第四 第一 Curve的由来 Curve的设计目标 Curve块存储 和 Curve文件存储 Curve社区Curve的由来 1. 代码复杂/代码量大 2. 运维难度高 3. 无法满足高的性能需求Curve的设计目标 1. Curve云原生软件定义存储 2. Curve块存储 Curve块存储 3. Curve文件存储 4. 高性能,易运维,云原生Curve块存储 1. 高性能分布式共享数据库场景 2. Curve块存储提供底层分布式共享存储 3. Polardb for PostgreSQL提供上层高性能数 据库服务 4. 性能测试 1. benchmarkSQL 每分钟事务数提升39% 2. pgbench 延迟降低21% TPS提升26% 研究现状Curve块存储 研究现状Curve块存储 1. 分布式块存储服务 2. KVM块存储服务 3. iSCSI协议 4. 容器云块存储(CSI) 应用场景Curve块存储 1. 高可用性/高可靠性 (易运维) 2. RAFT一致性协议 3. CopySet分配算法 4. 拓扑结构 5. 高性能 6. chunkfilepool (降低写放大) 7. data stripe (增大并发) 8. zerocopy0 码力 | 20 页 | 4.13 MB | 6 月前3
 新一代云原生分布式存储新一代云原生分布式存储—Curve 上 李小翠 网易数帆存储团队分布式存储介绍 01 存储的发展 | 分布式存储的分类 | 分布式存储的要素 02 03 04 Ceph 架构简介 | 场景介绍 | 使用中的问题 Curve 架构简介 | 数据对比 | 应用情况 FAQ 答疑存储的发展 互联网时代,数据大爆炸 大型主机 成本高 单点问题 扩容困难 各存储设备通过网络互联 各存储设备通过网络互联 大规模 弹性扩容 底层构建在分布式存储之上 云的概念 成本:共用基础设施 弹性:随意扩缩容 速度:更快的构建发布业务 底层构建在分布式存储之上 云原生的概念: 易用性:跨平台,超融合,弹性 小型主机 容量有限分布式存储的分类 按照各种应用场景所需的存储接口分类 对象 存储 文件 存储 块存储 接口为简单的 Get、PUT、DEL 和其他扩展 对指定地址空间进行随机读写 传统意义的块存储:磁盘分布式存储的要素 如何构建分布式文件系统? 以分布式块存储为例。 •提供大容量的块设备 •可以在指定地址空间内随机读写 write(offset, len) •服务质量要求:数据不能丢、服务随时可用、弹性扩缩容 要什么 •成百上千台存储节点 •磁盘故障、机器故障、网络故障概率性发生 有什么 分布式存储系统需要满足接口需求,并且有持续监控、错误检测、容错与自动恢复的能力0 码力 | 29 页 | 2.46 MB | 6 月前3 新一代云原生分布式存储新一代云原生分布式存储—Curve 上 李小翠 网易数帆存储团队分布式存储介绍 01 存储的发展 | 分布式存储的分类 | 分布式存储的要素 02 03 04 Ceph 架构简介 | 场景介绍 | 使用中的问题 Curve 架构简介 | 数据对比 | 应用情况 FAQ 答疑存储的发展 互联网时代,数据大爆炸 大型主机 成本高 单点问题 扩容困难 各存储设备通过网络互联 各存储设备通过网络互联 大规模 弹性扩容 底层构建在分布式存储之上 云的概念 成本:共用基础设施 弹性:随意扩缩容 速度:更快的构建发布业务 底层构建在分布式存储之上 云原生的概念: 易用性:跨平台,超融合,弹性 小型主机 容量有限分布式存储的分类 按照各种应用场景所需的存储接口分类 对象 存储 文件 存储 块存储 接口为简单的 Get、PUT、DEL 和其他扩展 对指定地址空间进行随机读写 传统意义的块存储:磁盘分布式存储的要素 如何构建分布式文件系统? 以分布式块存储为例。 •提供大容量的块设备 •可以在指定地址空间内随机读写 write(offset, len) •服务质量要求:数据不能丢、服务随时可用、弹性扩缩容 要什么 •成百上千台存储节点 •磁盘故障、机器故障、网络故障概率性发生 有什么 分布式存储系统需要满足接口需求,并且有持续监控、错误检测、容错与自动恢复的能力0 码力 | 29 页 | 2.46 MB | 6 月前3
 Raft在Curve存储中的工程实践云原生 分布式存储系统,支持 块存储 和 文件存储 2018~2021 Curve块存储 2021~2022 Curve文件存储 • 基于Openstack构建云计算平台 • 底层存储使用Ceph块存储 • 稳定性挑战 • 算力平台kubernetes的迅速发展 • AI/大数据业务的快速增长 • 存储使用Ceph文件存储/HDFS • 成本/性能挑战 Curve块存储和文件存储均采用raft协议整体架构 对接OpenStack平台为云主机提供高性能块 存储服务 • 对接Kubernetes为其提供RWO、RWX等类 型的持久化存储卷 • 对接PolarFS作为云原生数据库的高性能存储 底座,完美支持云原生数据库的存算分离架 构 • Curve作为云存储中间件使用S3兼容的对象 存储作为数据存储引擎,为公有云用户提供 高性价比的共享文件存储 • 支持在物理机上挂载使用块设备或FUSE文件 02 raft和braft 03 raft在Curve中的应用 05 Q&A 04 Curve对raft的优化RAFT协议简介 什么是raft • raft 是一种新型易于理解的分布式一致性复制协议,由斯坦福大学的Diego Ongaro和John Ousterhout提出,《In Search of an Understandable Consensus Algorithm(Extended0 码力 | 29 页 | 2.20 MB | 6 月前3 Raft在Curve存储中的工程实践云原生 分布式存储系统,支持 块存储 和 文件存储 2018~2021 Curve块存储 2021~2022 Curve文件存储 • 基于Openstack构建云计算平台 • 底层存储使用Ceph块存储 • 稳定性挑战 • 算力平台kubernetes的迅速发展 • AI/大数据业务的快速增长 • 存储使用Ceph文件存储/HDFS • 成本/性能挑战 Curve块存储和文件存储均采用raft协议整体架构 对接OpenStack平台为云主机提供高性能块 存储服务 • 对接Kubernetes为其提供RWO、RWX等类 型的持久化存储卷 • 对接PolarFS作为云原生数据库的高性能存储 底座,完美支持云原生数据库的存算分离架 构 • Curve作为云存储中间件使用S3兼容的对象 存储作为数据存储引擎,为公有云用户提供 高性价比的共享文件存储 • 支持在物理机上挂载使用块设备或FUSE文件 02 raft和braft 03 raft在Curve中的应用 05 Q&A 04 Curve对raft的优化RAFT协议简介 什么是raft • raft 是一种新型易于理解的分布式一致性复制协议,由斯坦福大学的Diego Ongaro和John Ousterhout提出,《In Search of an Understandable Consensus Algorithm(Extended0 码力 | 29 页 | 2.20 MB | 6 月前3
 分布式NewSQL数据库TiDB优刻得科技股份有限公司 版权所有 分布式 分布式NewSQL数据库 数据库 TiDB 产品⽂档 2 9 11 12 12 12 12 12 13 14 14 14 14 15 15 16 16 18 ⽬录 ⽬录 ⽬录 ⽬录 概览 概览 什么是 什么是TiDB 产品优势 产品优势 ⾼度兼容 MySQL 动态扩展 分布式事务 HTAP 真正⾦融级⾼可⽤ 适⽤场景 适⽤场景 对数据⼀致性及⾼可靠 对数据⼀致性及⾼可靠、系统⾼可⽤、可扩展性、容灾要求较⾼的⾦融⾏业属性的场景 对存储容量、可扩展性、并发要求较⾼的海量数据及⾼并发的 OLTP 场景 Real-time HTAP 场景 数据汇聚、⼆次加⼯处理的场景 真正⾦融级⾼可⽤ UCloud 云上 云上 TiDB 架构⽰意图 架构⽰意图 TiDB TiDB Serverless ⽬录 分布式NewSQL数据库 TiDB Copyright © 2012-2021 TiDB Serverless 删除 实例 实例 创建TiDB集群 查看TiDB实例列表 查看TiDB实例详情 删除TiDB实例 ⽤户 ⽤户 添加⽤⼾及权限 重置⽤⼾密码 删除⾮root⽤⼾ ⽬录 分布式NewSQL数据库 TiDB Copyright © 2012-2021 UCloud 优刻得 3/120 38 39 40 40 41 41 43 43 43 46 49 49 52 53 550 码力 | 120 页 | 7.42 MB | 6 月前3 分布式NewSQL数据库TiDB优刻得科技股份有限公司 版权所有 分布式 分布式NewSQL数据库 数据库 TiDB 产品⽂档 2 9 11 12 12 12 12 12 13 14 14 14 14 15 15 16 16 18 ⽬录 ⽬录 ⽬录 ⽬录 概览 概览 什么是 什么是TiDB 产品优势 产品优势 ⾼度兼容 MySQL 动态扩展 分布式事务 HTAP 真正⾦融级⾼可⽤ 适⽤场景 适⽤场景 对数据⼀致性及⾼可靠 对数据⼀致性及⾼可靠、系统⾼可⽤、可扩展性、容灾要求较⾼的⾦融⾏业属性的场景 对存储容量、可扩展性、并发要求较⾼的海量数据及⾼并发的 OLTP 场景 Real-time HTAP 场景 数据汇聚、⼆次加⼯处理的场景 真正⾦融级⾼可⽤ UCloud 云上 云上 TiDB 架构⽰意图 架构⽰意图 TiDB TiDB Serverless ⽬录 分布式NewSQL数据库 TiDB Copyright © 2012-2021 TiDB Serverless 删除 实例 实例 创建TiDB集群 查看TiDB实例列表 查看TiDB实例详情 删除TiDB实例 ⽤户 ⽤户 添加⽤⼾及权限 重置⽤⼾密码 删除⾮root⽤⼾ ⽬录 分布式NewSQL数据库 TiDB Copyright © 2012-2021 UCloud 优刻得 3/120 38 39 40 40 41 41 43 43 43 46 49 49 52 53 550 码力 | 120 页 | 7.42 MB | 6 月前3
 TiDB v8.5 中文手册· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 624 6.3.3 预估存储空间· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Open Protocol 中的 Row Changed Event 是 INSERT 事件还是 UPDATE 事件?· · · · · · · 954 7.8.19 TiCDC 占用多少 PD 的存储空间 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 955 7 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1828 12.5.11 只读存储节点最佳实践 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·0 码力 | 5095 页 | 104.54 MB | 10 月前3 TiDB v8.5 中文手册· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 624 6.3.3 预估存储空间· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Open Protocol 中的 Row Changed Event 是 INSERT 事件还是 UPDATE 事件?· · · · · · · 954 7.8.19 TiCDC 占用多少 PD 的存储空间 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 955 7 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1828 12.5.11 只读存储节点最佳实践 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·0 码力 | 5095 页 | 104.54 MB | 10 月前3
 TiDB v8.4 中文手册· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 618 6.3.3 预估存储空间· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1570 12.5.11 只读存储节点最佳实践 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2530 14.1.2 TiDB 数据库的存储· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·0 码力 | 5072 页 | 104.05 MB | 10 月前3 TiDB v8.4 中文手册· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 618 6.3.3 预估存储空间· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1570 12.5.11 只读存储节点最佳实践 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2530 14.1.2 TiDB 数据库的存储· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·0 码力 | 5072 页 | 104.05 MB | 10 月前3
 TiDB v8.2 中文手册· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 560 6.3.3 预估存储空间· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1502 12.5.11 只读存储节点最佳实践 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2522 14.1.2 TiDB 数据库的存储· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·0 码力 | 4987 页 | 102.91 MB | 10 月前3 TiDB v8.2 中文手册· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 560 6.3.3 预估存储空间· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1502 12.5.11 只读存储节点最佳实践 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2522 14.1.2 TiDB 数据库的存储· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·0 码力 | 4987 页 | 102.91 MB | 10 月前3
 Curve设计要点新一代分布式存储系统 Curve 李小翠Curve 是高性能、高可用、高可靠的分布式存储系统 • 高性能、低延迟 • 可支撑储场景:块存储、对象存储、云原生数据库、EC等 • 当前实现了高性能块存储,对接OpenStack和 K8s 网易内部线上无故障稳定运行一年多,线上异常演练 • 已开源 • github主页: https://opencurve.github.io/ • github代码仓库: 概述背景 01 02 03 04 总体设计 系统特性 近期规划背景 • 多个存储软件:SDFS、NEFS、NBS • 已有的开源软件:Ceph • 不能胜任性能、延迟敏感的场景 • 异常场景抖动较大(比如慢盘场景) • 去中心节点设计在集群不均衡的情况下需要人工运维 • 基于通用分布式存储构建上层存储服务背景 01 02 03 04 总体设计 系统特性 近期规划基本架构 收集集群状态信息,自动调度 • 数据节点 Chunkserver 数据存储 数据一致性基本架构 • 元数据节点 MDS 管理元数据信息 收集集群状态信息,自动调度 • 数据节点 Chunkserver 数据存储 副本一致性 • 客户端 Client 对元数据增删改查 对数据增删改查基本架构 • 快照克隆服务器 独立于核心服务 储到支持S3接口的 对象存储,不限制数量 异步快照、增量快照 从快照/镜像克隆0 码力 | 35 页 | 2.03 MB | 6 月前3 Curve设计要点新一代分布式存储系统 Curve 李小翠Curve 是高性能、高可用、高可靠的分布式存储系统 • 高性能、低延迟 • 可支撑储场景:块存储、对象存储、云原生数据库、EC等 • 当前实现了高性能块存储,对接OpenStack和 K8s 网易内部线上无故障稳定运行一年多,线上异常演练 • 已开源 • github主页: https://opencurve.github.io/ • github代码仓库: 概述背景 01 02 03 04 总体设计 系统特性 近期规划背景 • 多个存储软件:SDFS、NEFS、NBS • 已有的开源软件:Ceph • 不能胜任性能、延迟敏感的场景 • 异常场景抖动较大(比如慢盘场景) • 去中心节点设计在集群不均衡的情况下需要人工运维 • 基于通用分布式存储构建上层存储服务背景 01 02 03 04 总体设计 系统特性 近期规划基本架构 收集集群状态信息,自动调度 • 数据节点 Chunkserver 数据存储 数据一致性基本架构 • 元数据节点 MDS 管理元数据信息 收集集群状态信息,自动调度 • 数据节点 Chunkserver 数据存储 副本一致性 • 客户端 Client 对元数据增删改查 对数据增删改查基本架构 • 快照克隆服务器 独立于核心服务 储到支持S3接口的 对象存储,不限制数量 异步快照、增量快照 从快照/镜像克隆0 码力 | 35 页 | 2.03 MB | 6 月前3
 Nacos架构&原理
许进 7 > 推荐序 推荐序 阿里巴巴合伙人 - 蒋江伟(小邪) 随着企业加速数字化升级,越来越多的系统架构采用了分布式的架构,主要目的是为了解决集中化 和互联网化所带来的架构扩展性和面对海量用户请求的技术挑战。这里面其中有⼀个关键点是软负 载。因为整个分布式架构需要有⼀个软负载来协作各个节点之间的服务在线离线状态、数据⼀致性、 以及动态配置数据的推送。这里面最简单的需求就是将⼀个配置准时的推送到不同的节点。即便如 复杂。如何能将数据准确的在 3 秒钟之内推送到每⼀ 个计算节点,这是当时提出的⼀个要求,围绕这个要求,系统要做大量的研发和改造,类似的这种 关键的技术挑战点还非常非常的多。本书就是将面对复杂的分布式计算场景,海量并发的业务场景, 对软负载⼀个系统的进行阐述,通过 Nacos 开源分享阿里软负载最佳实践,希望能够帮助到各位开 发者,各位系统架构师,少走弯路。 阿里巴巴云原生应用平台负责人 - 年开源后引起了开发者的广泛关注和大量使用。本书也将介绍 Nacos 偏 AP 分布式系统的设计、全异步事件驱动的高性能架构和面向失败设计的高可用设计理念 等。相信开发者阅读后不仅可以更深入了解 Nacos,也有助于提高分布式系统的设计研发能力。 阿里巴巴中间件负责人 - 胡伟琪(白慕) 阿里巴巴在 10 多年分布式应用架构实践过程中,产出了⼀大批非常优秀的中间件技术产品,其中软 负载领域的0 码力 | 326 页 | 12.83 MB | 9 月前3 Nacos架构&原理
许进 7 > 推荐序 推荐序 阿里巴巴合伙人 - 蒋江伟(小邪) 随着企业加速数字化升级,越来越多的系统架构采用了分布式的架构,主要目的是为了解决集中化 和互联网化所带来的架构扩展性和面对海量用户请求的技术挑战。这里面其中有⼀个关键点是软负 载。因为整个分布式架构需要有⼀个软负载来协作各个节点之间的服务在线离线状态、数据⼀致性、 以及动态配置数据的推送。这里面最简单的需求就是将⼀个配置准时的推送到不同的节点。即便如 复杂。如何能将数据准确的在 3 秒钟之内推送到每⼀ 个计算节点,这是当时提出的⼀个要求,围绕这个要求,系统要做大量的研发和改造,类似的这种 关键的技术挑战点还非常非常的多。本书就是将面对复杂的分布式计算场景,海量并发的业务场景, 对软负载⼀个系统的进行阐述,通过 Nacos 开源分享阿里软负载最佳实践,希望能够帮助到各位开 发者,各位系统架构师,少走弯路。 阿里巴巴云原生应用平台负责人 - 年开源后引起了开发者的广泛关注和大量使用。本书也将介绍 Nacos 偏 AP 分布式系统的设计、全异步事件驱动的高性能架构和面向失败设计的高可用设计理念 等。相信开发者阅读后不仅可以更深入了解 Nacos,也有助于提高分布式系统的设计研发能力。 阿里巴巴中间件负责人 - 胡伟琪(白慕) 阿里巴巴在 10 多年分布式应用架构实践过程中,产出了⼀大批非常优秀的中间件技术产品,其中软 负载领域的0 码力 | 326 页 | 12.83 MB | 9 月前3
 Curve核心组件之mds – 网易数帆Curve核心组件之 MDS 陈威Curve 是高性能、高可用、高可靠的分布式存储系统 • 高性能、低延迟 • 可支撑储场景:块存储、对象存储、云原生数据库、EC等 • 当前实现了高性能块存储,对接OpenStack和 K8s 网易内部线上无故障稳定运行一年多 • 已开源 • github主页: https://opencurve.github.io/ • github代码仓库: https://github 概述整体架构 01 02 03 MDS各组件详细介绍 Q&A基本架构 • 元数据节点 MDS 管理元数据信息 收集集群状态信息,自动调度 • 数据节点 Chunkserver 数据存储 副本一致性 • 客户端 Client 对元数据增删改查 对数据增删改查 • 快照克隆服务器MDS各个组件 MDS是中心节点,负责元数据管理、集群状态收集与调度。MDS包含以下几个部分: • 磁盘作为最小的服务单元。TOPOLOGY curve在上物理pool之上又引入逻辑pool的概念,以实现统一存储系统的需求,即在单个存储系统中多副 本PageFile支持块设备、三副本AppendFile(待开发)支持在线对象存储、AppendECFile(待开发)支持 近线对象存储可以共存。 如上所示LogicalPool与pool为多对一的关系,一个物理pool可以存放各种类型的file。当然由于curve支持0 码力 | 23 页 | 1.74 MB | 6 月前3 Curve核心组件之mds – 网易数帆Curve核心组件之 MDS 陈威Curve 是高性能、高可用、高可靠的分布式存储系统 • 高性能、低延迟 • 可支撑储场景:块存储、对象存储、云原生数据库、EC等 • 当前实现了高性能块存储,对接OpenStack和 K8s 网易内部线上无故障稳定运行一年多 • 已开源 • github主页: https://opencurve.github.io/ • github代码仓库: https://github 概述整体架构 01 02 03 MDS各组件详细介绍 Q&A基本架构 • 元数据节点 MDS 管理元数据信息 收集集群状态信息,自动调度 • 数据节点 Chunkserver 数据存储 副本一致性 • 客户端 Client 对元数据增删改查 对数据增删改查 • 快照克隆服务器MDS各个组件 MDS是中心节点,负责元数据管理、集群状态收集与调度。MDS包含以下几个部分: • 磁盘作为最小的服务单元。TOPOLOGY curve在上物理pool之上又引入逻辑pool的概念,以实现统一存储系统的需求,即在单个存储系统中多副 本PageFile支持块设备、三副本AppendFile(待开发)支持在线对象存储、AppendECFile(待开发)支持 近线对象存储可以共存。 如上所示LogicalPool与pool为多对一的关系,一个物理pool可以存放各种类型的file。当然由于curve支持0 码力 | 23 页 | 1.74 MB | 6 月前3
共 161 条
- 1
- 2
- 3
- 4
- 5
- 6
- 17














