积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(33)Python(21)云计算&大数据(14)综合其他(8)人工智能(7)Service Mesh(7)数据库(5)云原生CNCF(5)TiDB(5)前端开发(4)

语言

全部中文(简体)(45)英语(20)中文(简体)(2)

格式

全部PDF文档 PDF(67)
 
本次搜索耗时 0.023 秒,为您找到相关结果约 67 个.
  • 全部
  • 后端开发
  • Python
  • 云计算&大数据
  • 综合其他
  • 人工智能
  • Service Mesh
  • 数据库
  • 云原生CNCF
  • TiDB
  • 前端开发
  • 全部
  • 中文(简体)
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 人工智能安全治理框架 1.0

    ……………………………… 2 3. 人工智能安全风险分类 …………………………………… 3 3.1 人工智能内生安全风险 ……………………………… 3 3.2 人工智能应用安全风险 ……………………………… 5 4. 技术应对措施 ……………………………………………… 7 4.1 针对人工智能内生安全风险 ………………………… 7 4.2 针对人工智能应用安全风险 ………………………… 9 5. 综合治理措施 1 - 人工智能安全治理框架 人工智能是人类发展新领域,给世界带来巨大机遇,也带来各类风险挑战。 落实《全球人工智能治理倡议》,遵循“以人为本、智能向善”的发展方向,为 推动政府、国际组织、企业、科研院所、民间机构和社会公众等各方,就人工 智能安全治理达成共识、协调一致,有效防范化解人工智能安全风险,制定本 框架。 1. 人工智能安全治理原则 秉持共同、综合、合作、可持续的安全观,坚持发展和安全并重,以促 秉持共同、综合、合作、可持续的安全观,坚持发展和安全并重,以促 进人工智能创新发展为第一要务,以有效防范化解人工智能安全风险为出发点 和落脚点,构建各方共同参与、技管结合、分工协作的治理机制,压实相关主 体安全责任,打造全过程全要素治理链条,培育安全、可靠、公平、透明的人 工智能技术研发和应用生态,推动人工智能健康发展和规范应用,切实维护国 家主权、安全和发展利益,保障公民、法人和其他组织的合法权益,确保人工 智能技术造福于人类。
    0 码力 | 20 页 | 3.79 MB | 1 月前
    3
  • pdf文档 DeepSeek从入门到精通(20250204)

    按照预设脚本响应,较难理解人类情感和意图 更自然地与人互动,理解复杂情感和意图 问题解决能力 擅长解决结构化和定义明确的问题 能够处理多维度和非结构化问题,提供创造性的解 决方案 伦理问题 作为受控工具,几乎没有伦理问题 引发自主性和控制问题的伦理讨论 CoT链式思维的出现将大模型分为了两类:“概率预测(快速反应)”模型和“链式推理(慢速思考)”模型。 前者适合快速反馈,处理即时任务;后者通过推理解决复杂问题 ),可能干扰其逻辑主线。 • 不要对通用模型“过度信任”(如直接询问复杂推理问题,需分步验证结果)。 从“下达指令”到“表达需求” 策略类型 定义与目标 适用场景 示例(推理模型适用) 优势与风险 指令驱动 直接给出明确步骤或 格式要求 简单任务、需快速执行 “用Python编写快速排序函 数,输出需包含注释。” ✅ 结果精准高效 ❌ 限制模型自主优化空 间 需求导向 描述问题背景与目标, 强制逻辑链条(如“分三点回答”) 推理模型 需明确对话目标,避免开放发散 “从技术、伦理、经济三方面分析 AI的未来” 情感化提问(如“你害怕AI吗?”) 逻辑分析 推理模型 直接抛出复杂问题 “分析‘电车难题’中的功利主义 与道德主义冲突” 添加主观引导(如“你认为哪种对?”) 通用模型 需拆分问题,逐步追问 “先解释电车难题的定义,再对比 两种伦理观的差异” 一次性提问复杂逻辑 如何向AI表达需求 需求类型
    0 码力 | 104 页 | 5.37 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    按照预设脚本响应,较难理解人类情感和意图 更自然地与人互动,理解复杂情感和意图 问题解决能力 擅长解决结构化和定义明确的问题 能够处理多维度和非结构化问题,提供创造性的解 决方案 伦理问题 作为受控工具,几乎没有伦理问题 引发自主性和控制问题的伦理讨论 CoT链式思维的出现将大模型分为了两类:“概率预测(快速反应)”模型和“链式推理(慢速思考)”模型。 前者适合快速反馈,处理即时任务;后者通过推理解决复杂问题 ),可能干扰其逻辑主线。 • 不要对通用模型“过度信任”(如直接询问复杂推理问题,需分步验证结果)。 从“下达指令”到“表达需求” 策略类型 定义与目标 适用场景 示例(推理模型适用) 优势与风险 指令驱动 直接给出明确步骤或 格式要求 简单任务、需快速执行 “用Python编写快速排序函 数,输出需包含注释。” ✅ 结果精准高效 ❌ 限制模型自主优化空 间 需求导向 描述问题背景与目标, 强制逻辑链条(如“分三点回答”) 推理模型 需明确对话目标,避免开放发散 “从技术、伦理、经济三方面分析 AI的未来” 情感化提问(如“你害怕AI吗?”) 逻辑分析 推理模型 直接抛出复杂问题 “分析‘电车难题’中的功利主义 与道德主义冲突” 添加主观引导(如“你认为哪种对?”) 通用模型 需拆分问题,逐步追问 “先解释电车难题的定义,再对比 两种伦理观的差异” 一次性提问复杂逻辑 如何向AI表达需求 需求类型
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
  • pdf文档 清华大学 普通人如何抓住DeepSeek红利

    工具调用 格式转换 关系抽取 语言理解 文案写作 代码注释 故事创作 通用问答 专业领域问答 因果推理 知识推理 问答系统 逻辑推理 自然语言处理 文本生成与创作 建议生成 风险评估 辅助决策 概念关联 知识整合 交互能力 情感分析 文本分类 图像理解 跨模态转换 专业建议 任务分解 情感回应 上下文理解 对话能力 多轮对话 数学运算 逻辑分析 1 功能分区’的内容,要求包含自动化立体仓库、AGV调度中心、冷链专区的技术参数,用数据列表形式 呈现。” 关键技巧: p 数据嫁接:若缺乏具体数据,直接让AI生成合理虚构值(标注“示例”规避风险): p “假设园区占地500亩,日均处理包裹量50万件,请计算自动化分拣设备的配置数量,用表格展示。” p 模板复制:对同类章节(如3.1/3.2/3.3)使用相同指令模板,仅替换关键词。 p 第三阶段:20分钟——用AI补全软性内容(目标:1000字) 填充“虚但必需”的部分: p 政策背书: “生成5条2023年国家层面支持智能物流园区的政策原文(带发文号),并解读对本案的指导意义。” p 风险评估: “列出智能物流园区常见的3大技术风险(如AGV系统宕机),每项配100字应对方案。” p 效益测算: “用公式推算:园区建成后3年内降本增效收益,假设人工成本减少30%,分拣错误率下降25%。” 你的操作:
    0 码力 | 65 页 | 4.47 MB | 8 月前
    3
  • pdf文档 2024 中国开源开发者报告

    移逐渐下降,可能受到内部资 源调整或技术方向变化的影响。 19 / 111 本章汇集了来自不同领域专家和开发者对开源大模型和人工 智能技术的深刻见解,不仅涵盖了技术层面的深入探讨,也 触及了社会、伦理和政策层面的广泛议题。 从对中国开源模型崛起的分析,到对开源模型持久性的思考, 再到对超级应用探寻之路的探索,每篇文章都为我们提供了 独特的视角,帮助我们理解开源大模型在 AI 技术领域的作用 发显著。开源数据集和算法不仅推动了 AI 研究的进步,也在应用层面带来了深远的影响。然而,伴随这些机遇的还有诸多风险与挑战,如 数据质量、版权问题和算法透明性等。本文将浅析大模型训练过程中开源数据集和算法的重要性 和影响,分析其在促进 AI 研究和应用中的机遇,并警示相关的风险与挑战。 任何方案都具有两面性和在特殊环境下的讨论的意义和前提,因此,本文不讨论开源或对立 面(闭源)的绝对取舍问题,仅对开源的有利之处加以浅析。 加深入的教育和培训,以此不断提升整个行业人才的技术水平。 由于目前主流的模型训练算法都需要依靠对训练数据(样本)的统计(概率),因此,开放 的数据和算法能够在更大程度上确保样本的质量,从而避免更多未知的风险。例如就在 2024 年 12 月 1 日,用户发现 ChatGPT 在需要输出“David Mayer”这个名字的时候会突然提示拒绝: 此事件一度被解读为 GPT 模型在训练过程中被植入了特定的样本或算法,以避免讨论特定
    0 码力 | 111 页 | 11.44 MB | 8 月前
    3
  • pdf文档 清华大学第二弹:DeepSeek赋能职场

    Route (路径灵活性) 线性路径 (流程标准化) 网状路径 (多路径探索) Responsiveness (响应模式) 被动适配 (按规则执行) 主动创新 (自主决策) Risk (风险特征) 低风险 (稳定可控) 高风险 (不确定性高) (限定于文本生成任务) DeepSeek 两种模型对比 V3 R1 DeepSeek 两种模型对比 V3 R1 如何提问?两种模型的提示语差异 • •交互特征 执行层: 2. 能力矩阵 (Capability Matrix) •功能范围 •专业技能 •决策权限 约束层: 3. 边界系统 (Boundary System) •伦理规范 •安全限制 •资源约束 操作层: 4. 工作引擎 (Operation Engine) •输入处理 •执行流程 •输出规范 如何使用DeepSeek制作可视化图表? 如何使用DeepSeek制作可视化图表?
    0 码力 | 35 页 | 9.78 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    案、法律意见书等,提高律师工作效率。 • 智能医疗数据分析与诊断:构建智能医疗 平台,分析病历、检查报告和基因数据,帮助 医生提供更准确的诊断与治疗方案。 • 金融风险预测与管理:开发金融风险分析 工具,收集并分析市场数据,预测风险并为金 融机构提供管理建议。 • 智能文学创作辅助:为作家提供创作灵感 和文本构思,生成符合中文文学传统的故事情 节和诗句,助力突破创作瓶颈。 • 智能广告创意生成:根据产品特点和目标 无数据检索:以现有真实数据库作为支撑,通过关键词 检索,自动搜集相关文献并生成综述报告,目前只支持 英文检索。  低重复率:结合现有查重机制与AI技术,在内容生成阶 段引入重复检测与优化策略,从源头上降低重复率风险, 所生成的综述普通重复率与AIGC重复率均在5%以下。  无限双语数据导入:支持中文与英文文献的导入,并且 文献数据量没有限制,能够轻松处理中文文献的系统性 梳理,以及国际文献的跨语言分析。 完全开源免费;社区支持广泛; 多语言基础能力均衡 多模态功能缺失; 长文本生成质量不稳定 Anthropic Claude-3.5 闭源推理模型 对话系统、内容生成、 逻辑推理 对话逻辑连贯性强; 伦理安全性高;文档分析能力突出 中文支持较弱; 闭源且 API 访问受限 百度 文心一言 闭源大语言模型 多语言处理、复杂的语 言理解和文本生成 中文场景优化最佳; 多模态搜索整合;本土行业适配性强
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 24-云原生中间件之道-高磊

    (Istio零信任、Calico零信任、Cilium零信任、WorkLoad鉴权、WorkLoad 间授权等)、DevSecOps(安全左右移等等,比如代码或者镜像扫描)、 RASP应用安全、数据安全、态势感知与风险隔离 由于云原生托管的应用是碎片化的,环境变化也是碎片化的,而且其业务类型越来越多,比如已经延展到边 缘计算盒子,此时攻击面被放大,在云原生环境下安全是一个核心价值,需要立体纵深式的安全保障。 由 三方集成。(涉及业务能力) RASP(运行时安全应 用程序自我保护) 可以看做是IAST的兄弟,RASP通过程序上下文和敏感函数检查行为方式 来阻止攻击,属于一种主动的态势感知和风险隔离技术手段 可以自动化的对非预计风险进行识别和风险隔离 对系统性能有一定影响 可信计算 核心目标是保证系统和应用的完整性,从而保证系统按照设计预期所规 定的安全状态。尤其是像边缘计算BOX这种安全防护,根据唯一Hash值验 应用透明,全局管理视角,细粒度安全策略 Check&Report机制影响通信性能,并只涉及到服务 通信级别的安全,对node没有防护 Calico零信任 主要针对Node层的访问控制,可以让攻击者难以横向移动,隔离了风险 应用透明,全局管理视角,细粒度安全策略,针 对Node层面构建安全 采用IpTables,有一定的性能消耗 Cilium零信任 采用eBPF,为Mesh打造具备API感知和安全高效的网络层安全解决方案,
    0 码力 | 22 页 | 4.39 MB | 6 月前
    3
  • pdf文档 27-云原生赋能 AIoT 和边缘计算、云形态以及成熟度模型之道-高磊

    效率,降低应用落地的整体成本 成熟度评估方法 样例:深信服-整体评估 企业业务战略一部分 赋能企业快速上云、业务 连续性、业务安全性、边 缘计算赋能,关注中小企 业市场 风险集中点,前期不建议 用平台规范企业组织架构。 传统云商业模式 云原生,国内越来越多的创业公司跑步入局,新推出的云计算产品都要带上“云原生”的标签。各路资本也狂扫云原生“公司”,试图寻找 刚开始,从产业的整合,到商业模式、合作方向等都处于摸索阶段。客户、供应商、运营商等(转嫁风险、各取利益)之间存在博弈 关系(避免负和或者零和博弈,争取靠近正和博弈),云原生也与传统云模式存在博弈关系(天然的正和博弈) 对客户、运营商来说,有利因素主要体现在解决资金紧张问题、降低投资风险,将一部分风险转嫁给厂商,通过与设备商绑定的利益 关系,能获得厂商更多更好的支持和全球经验;不利因素在于相 要体现在可能获得高于传统设备销售的收益(视定价水平和业务发展状况),提供了降 价以外的竞争手段,并获得更密切的客户关系。不利因素体现在业务发展风险,实际业务量达不到预测水平或装机容量导致货款无法 全部收回,回款周期拉长导致客户信用风险放大,存在合同条款风险(双方权责、收入确认机制、资产转移等)。 云原生商业模式 云原生,天然的就是正和博弈关系,那是因为云原生就是为利用云的优势,由于它面向应用赋能反过来促进了云资源的销售
    0 码力 | 20 页 | 5.17 MB | 6 月前
    3
  • pdf文档 蚂蚁金服 API Gateway Mesh 思考与实践

    微服务网关架构(2013-2016) LB spanner 特点: • 微服务网关 • 蚂蚁金服 RPC 协议 • 安全\鉴权\监控 • Netty 异步化 • 私有协议 MMTP 缺点: • API 网关变更风险 • 业务分级隔离需求 • 大促容量规划问题 HTTP/MMTP sofarpc10/21 去中心化网关架构(2016-2018) APP 去中心化网关架构 LB spanner APP1 mgs15/21 可灰度 可回滚 可监控 蚂蚁金服「三板斧」 API Gateway Mesh 落地挑战 风险 运维 性能 功能 上线不是一件容易的事 Golang 历史债清理 sian->protobuf ead->goroutine sigma 已知的风险都不是风险16/21 M O S N A P P Gateway LB Spanner x % x*(100-y)
    0 码力 | 22 页 | 1.72 MB | 6 月前
    3
共 67 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
前往
页
相关搜索词
人工智能人工智能安全治理框架1.0DeepSeek入门精通20250204清华华大大学清华大学普通通人普通人如何抓住红利2024中国开源开发开发者报告第二赋能职场DeepResearch科研24原生中间中间件之道高磊27AIoT边缘计算形态以及成熟成熟度模型蚂蚁金服APIGatewayMesh思考实践
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩