积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部系统运维(19)后端开发(17)存储(14)Julia(10)综合其他(9)人工智能(9)Go(4)网络与安全(4)Python(2)Tornado(2)

语言

全部中文(简体)(14)中文(繁体)(10)英语(9)zh(9)JavaScript(1)ro(1)zh-cn(1)

格式

全部PDF文档 PDF(40)DOC文档 DOC(2)PPT文档 PPT(2)其他文档 其他(1)
 
本次搜索耗时 0.488 秒,为您找到相关结果约 45 个.
  • 全部
  • 系统运维
  • 后端开发
  • 存储
  • Julia
  • 综合其他
  • 人工智能
  • Go
  • 网络与安全
  • Python
  • Tornado
  • 全部
  • 中文(简体)
  • 中文(繁体)
  • 英语
  • zh
  • JavaScript
  • ro
  • zh-cn
  • 全部
  • PDF文档 PDF
  • DOC文档 DOC
  • PPT文档 PPT
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 julia 1.10.10

    -2^63 2^63 - 1 UInt64 64 0 2^64 - 1 Int128 ✓ 128 -2^127 2^127 - 1 UInt128 128 0 2^128 - 1 Bool N/A 8 false (0) true (1) • Floating-point types: Additionally, full support for Complex and Rational representable by T. • x % T converts an integer x to a value of integer type T congruent to x modulo 2^n, where n is the number of bits in T. In other words, the binary representation is truncated to fit. • exponential function at x expm1(x) accurate exp(x)-1 for x near zero ldexp(x,n) x*2^n computed efficiently for integer values of n log(x) natural logarithm of x log(b,x) base b logarithm of x log2(x) base
    0 码力 | 1692 页 | 6.34 MB | 3 月前
    3
  • pdf文档 Julia 1.10.9

    -2^63 2^63 - 1 UInt64 64 0 2^64 - 1 Int128 ✓ 128 -2^127 2^127 - 1 UInt128 128 0 2^128 - 1 Bool N/A 8 false (0) true (1) • Floating-point types: Additionally, full support for Complex and Rational representable by T. • x % T converts an integer x to a value of integer type T congruent to x modulo 2^n, where n is the number of bits in T. In other words, the binary representation is truncated to fit. • exponential function at x expm1(x) accurate exp(x)-1 for x near zero ldexp(x,n) x*2^n computed efficiently for integer values of n log(x) natural logarithm of x log(b,x) base b logarithm of x log2(x) base
    0 码力 | 1692 页 | 6.34 MB | 3 月前
    3
  • pdf文档 Julia 1.11.5 Documentation

    -2^63 2^63 - 1 UInt64 64 0 2^64 - 1 Int128 ✓ 128 -2^127 2^127 - 1 UInt128 128 0 2^128 - 1 Bool N/A 8 false (0) true (1) • Floating-point types: 15CHAPTER 5. INTEGERS AND FLOATING-POINT NUMBERS 16 representable by T. • x % T converts an integer x to a value of integer type T congruent to x modulo 2^n, where n is the number of bits in T. In other words, the binary representation is truncated to fit. • exponential function at x expm1(x) accurate exp(x) - 1 for x near zero ldexp(x, n) x * 2^n computed efficiently for integer values of n log(x) natural logarithm of x log(b, x) base b logarithm of x log2(x)
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 Julia 1.11.6 Release Notes

    -2^63 2^63 - 1 UInt64 64 0 2^64 - 1 Int128 ✓ 128 -2^127 2^127 - 1 UInt128 128 0 2^128 - 1 Bool N/A 8 false (0) true (1) • Floating-point types: 15CHAPTER 5. INTEGERS AND FLOATING-POINT NUMBERS 16 representable by T. • x % T converts an integer x to a value of integer type T congruent to x modulo 2^n, where n is the number of bits in T. In other words, the binary representation is truncated to fit. • exponential function at x expm1(x) accurate exp(x) - 1 for x near zero ldexp(x, n) x * 2^n computed efficiently for integer values of n log(x) natural logarithm of x log(b, x) base b logarithm of x log2(x)
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 Julia 1.11.4

    -2^63 2^63 - 1 UInt64 64 0 2^64 - 1 Int128 ✓ 128 -2^127 2^127 - 1 UInt128 128 0 2^128 - 1 Bool N/A 8 false (0) true (1) • Floating-point types: 15CHAPTER 5. INTEGERS AND FLOATING-POINT NUMBERS 16 representable by T. • x % T converts an integer x to a value of integer type T congruent to x modulo 2^n, where n is the number of bits in T. In other words, the binary representation is truncated to fit. • exponential function at x expm1(x) accurate exp(x) - 1 for x near zero ldexp(x, n) x * 2^n computed efficiently for integer values of n log(x) natural logarithm of x log(b, x) base b logarithm of x log2(x)
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 julia 1.13.0 DEV

    -2^63 2^63 - 1 UInt64 64 0 2^64 - 1 Int128 ✓ 128 -2^127 2^127 - 1 UInt128 128 0 2^128 - 1 Bool N/A 8 false (0) true (1) • Floating-point types: 15CHAPTER 5. INTEGERS AND FLOATING-POINT NUMBERS 16 representable by T. • x % T converts an integer x to a value of integer type T congruent to x modulo 2^n, where n is the number of bits in T. In other words, the binary representation is truncated to fit. • exponential function at x expm1(x) accurate exp(x) - 1 for x near zero ldexp(x, n) x * 2^n computed efficiently for integer values of n log(x) natural logarithm of x log(b, x) base b logarithm of x log2(x)
    0 码力 | 2058 页 | 7.45 MB | 3 月前
    3
  • pdf文档 Julia 1.12.0 RC1

    -2^63 2^63 - 1 UInt64 64 0 2^64 - 1 Int128 ✓ 128 -2^127 2^127 - 1 UInt128 128 0 2^128 - 1 Bool N/A 8 false (0) true (1) • Floating-point types: 15CHAPTER 5. INTEGERS AND FLOATING-POINT NUMBERS 16 representable by T. • x % T converts an integer x to a value of integer type T congruent to x modulo 2^n, where n is the number of bits in T. In other words, the binary representation is truncated to fit. • exponential function at x expm1(x) accurate exp(x) - 1 for x near zero ldexp(x, n) x * 2^n computed efficiently for integer values of n log(x) natural logarithm of x log(b, x) base b logarithm of x log2(x)
    0 码力 | 2057 页 | 7.44 MB | 3 月前
    3
  • pdf文档 Julia 1.12.0 Beta4

    -2^63 2^63 - 1 UInt64 64 0 2^64 - 1 Int128 ✓ 128 -2^127 2^127 - 1 UInt128 128 0 2^128 - 1 Bool N/A 8 false (0) true (1) • Floating-point types: 15CHAPTER 5. INTEGERS AND FLOATING-POINT NUMBERS 16 representable by T. • x % T converts an integer x to a value of integer type T congruent to x modulo 2^n, where n is the number of bits in T. In other words, the binary representation is truncated to fit. • exponential function at x expm1(x) accurate exp(x) - 1 for x near zero ldexp(x, n) x * 2^n computed efficiently for integer values of n log(x) natural logarithm of x log(b, x) base b logarithm of x log2(x)
    0 码力 | 2057 页 | 7.44 MB | 3 月前
    3
  • pdf文档 Julia 1.12.0 Beta3

    -2^63 2^63 - 1 UInt64 64 0 2^64 - 1 Int128 ✓ 128 -2^127 2^127 - 1 UInt128 128 0 2^128 - 1 Bool N/A 8 false (0) true (1) • Floating-point types: 15CHAPTER 5. INTEGERS AND FLOATING-POINT NUMBERS 16 representable by T. • x % T converts an integer x to a value of integer type T congruent to x modulo 2^n, where n is the number of bits in T. In other words, the binary representation is truncated to fit. • exponential function at x expm1(x) accurate exp(x) - 1 for x near zero ldexp(x, n) x * 2^n computed efficiently for integer values of n log(x) natural logarithm of x log(b, x) base b logarithm of x log2(x)
    0 码力 | 2057 页 | 7.44 MB | 3 月前
    3
  • pdf文档 julia 1.12.0 beta1

    -2^63 2^63 - 1 UInt64 64 0 2^64 - 1 Int128 ✓ 128 -2^127 2^127 - 1 UInt128 128 0 2^128 - 1 Bool N/A 8 false (0) true (1) • Floating-point types: 15CHAPTER 5. INTEGERS AND FLOATING-POINT NUMBERS 16 representable by T. • x % T converts an integer x to a value of integer type T congruent to x modulo 2^n, where n is the number of bits in T. In other words, the binary representation is truncated to fit. • exponential function at x expm1(x) accurate exp(x) - 1 for x near zero ldexp(x, n) x * 2^n computed efficiently for integer values of n log(x) natural logarithm of x log(b, x) base b logarithm of x log2(x)
    0 码力 | 2047 页 | 7.41 MB | 3 月前
    3
共 45 条
  • 1
  • 2
  • 3
  • 4
  • 5
前往
页
相关搜索词
julia1.1010Julia1.11DocumentationReleaseNotes1.13DEV1.12RC1Beta4Beta3beta1
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩