人工智能安全治理框架 1.0全国网络安全标准化技术委员会 2024年9月 人工智能 安全治理框架1. 人工智能安全治理原则 …………………………………… 1 2. 人工智能安全治理框架构成 ……………………………… 2 3. 人工智能安全风险分类 …………………………………… 3 3.1 人工智能内生安全风险 ……………………………… 3 3.2 人工智能应用安全风险 ……………………………… 5 4. 技术应对措施 ……………………………………………… 和落脚点,构建各方共同参与、技管结合、分工协作的治理机制,压实相关主 体安全责任,打造全过程全要素治理链条,培育安全、可靠、公平、透明的人 工智能技术研发和应用生态,推动人工智能健康发展和规范应用,切实维护国 家主权、安全和发展利益,保障公民、法人和其他组织的合法权益,确保人工 智能技术造福于人类。 1.1 包容审慎、确保安全。鼓励发展创新,对人工智能研发及应用采取 包容态度。严守安全底线,对危害国家安全、社会公共利益、公众合法权益的 1.2 风险导向、敏捷治理。密切跟踪人工智能研发及应用趋势,从人工 智能技术自身、人工智能应用两方面分析梳理安全风险,提出针对性防范应对 措施。关注安全风险发展变化,快速动态精准调整治理措施,持续优化治理机 制和方式,对确需政府监管事项及时予以响应。 1.3 技管结合、协同应对。面向人工智能研发应用全过程,综合运用技术、 管理相结合的安全治理措施,防范应对不同类型安全风险。围绕人工智能研发0 码力 | 20 页 | 3.79 MB | 1 月前3
【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502360集团创始人 周鸿祎 3 政企、创业者必读政企、创业者必读 一张图读懂一堂DeepSeek课政企、创业者必读 AI给了一个比互联网更大的机会 互联网是连接平台,人工智能是生产力 互联网是赋能性技术,生产力属性较弱 人工智能既能单兵作战,也能外部赋能 互联网创造了能写140个字的推特和分享照片的Instagram AI能帮助人解决登陆火星、能源自由的问题 5政企、创业者必读 大模型 电气革命 信息革命 以大模型为代表的 人工智能革命 人工智能是新质生产力的关键支撑技术,人工智能+百业千行将带动新一轮工业革命,为高质量发展注入强大动能 大模型的进一步突破将引领人类社会进入智能化时代,对我们的生活方式、生产方式带来巨大变革 重塑经济图景 解决复杂问题 7政企、创业者必读 8 AI不仅是技术革新,更是思维方式和社会结构的变革 国家 产业 个人 企业政企、创业者必读 全面超越人类的人工智能在逻辑上不成立政企、创业者必读 15 DeepSeek出现之前的十大预判 之二 慢思考成为新的发展模式 大模型发展范式正在从「预训练」转向「后训练」和「推理时计算」 大模型厂商都在探索慢思考、思维链技术政企、创业者必读 DeepSeek出现之前的十大预判 之三 模型越做越专 除了少数科技巨头,大多数公司都专注于做专业大模型 MoE架构盛行,本质是多个专家模型组成一个大模型 Dee0 码力 | 76 页 | 5.02 MB | 5 月前3
Rust 程序设计语言 简体中文版 1.85.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.1. 变量与可变性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.2. 引用与借用 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 7.2. 定义模块来控制作用域与私有性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 码力 | 562 页 | 3.23 MB | 24 天前3
Tornado 6.5 Documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 6.2 Web framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Python Module Index 257 Index 259 iiiTornado Documentation, Release 6.5.1 Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed. By using non-blocking world” example web app for Tornado: import asyncio import tornado class MainHandler(tornado.web.RequestHandler): def get(self): self.write("Hello, world") def make_app(): return tornado.web.Application([0 码力 | 272 页 | 1.12 MB | 3 月前3
Tornado 6.5 DocumentationTornado [https://www.tornadoweb.org] is a Python web framework and asynchronous networking library, originally developed at FriendFeed [https://en.wikipedia.org/wiki/FriendFeed]. By using non-blocking s] Hello, world Here is a simple “Hello, world” example web app for Tornado: import asyncio import tornado class MainHandler(tornado.web.RequestHandler): def get(self): self.write("Hello write("Hello, world") def make_app(): return tornado.web.Application([ (r"/", MainHandler), ]) async def main(): app = make_app() app.listen(8888) await asyncio.Event().wait()if0 码力 | 437 页 | 405.14 KB | 3 月前3
Dynamic Model in TVMAmazon Web Services, Inc. or its Affiliates. All rights reserved. Presenter: Haichen Shen, Yao Wang Amazon SageMaker Neo, Deep Engine Science Dynamic Model in TVM AWS AI© 2019, Amazon Web Services while loop Limitation of TVM/graph runtime ● Cannot compile and run dynamic models© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Support dynamic model in TVM ● Support Any-dim Graph dispatch for a (sub-)graph In collaboration with Jared Roesch, Zhi Chen, Wei Chen© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. “Any” in Relay typing Any: represent an unknown0 码力 | 24 页 | 417.46 KB | 5 月前3
Bring Your Own Codegen to TVM© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon/Intel Confidentia Presenter: Zhi Chen, Cody Yu Amazon SageMaker Neo, Deep Engine Science Bring Your Own Codegen to TVM TVM AWS AI© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Considering You... Design and manufacture a deep learning chip which achieves amazing performance on widely-used operators Suppression (NMS) is too new to be supported by your chip But NMS is supported by TVM!© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Let TVM Be the Compiler of Your Chip Your0 码力 | 19 页 | 504.69 KB | 5 月前3
TVM Meetup: Quantization© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Animesh Jain Amazon SageMaker Neo Compilation of Quantized Models in TVM AWS AI© 2019, Amazon Web Services, Inc. or its Affiliates 𝑟𝑒𝑎𝑙_𝑣𝑎𝑙𝑢𝑒 = 𝑠𝑐𝑎𝑙𝑒 ∗ (𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑_𝑣𝑎𝑙𝑢𝑒 − 𝑧𝑒𝑟𝑜_𝑝𝑜𝑖𝑛𝑡)© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Quantization in TVM • Quantization within pre-quantized graph in TFLite or MxNet • Use high-level wrapper ops of QNN dialect© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. TVM Overview Framework Graph Mxnet TF ….0 码力 | 19 页 | 489.50 KB | 5 月前3
Trends Artificial Intelligence
one can make. The magic of watching AI do your work for you feels like the early days of email and web search – technologies that fundamentally changed our world. The better / faster / cheaper impacts 1993 with release of the World Wide Web (WWW) into the public domain, which allowed users to create websites; however, Tim Berners-Lee invented the World Wide Web in 1989, per CERN. Source: Google, USA Morgan Stanley, ‘Google and Meta: AI vs. Fundamental 2H Debates’ (7/23), Our World in Data, other web sources per MS Years to 50% Adoption of Household Technologies in USA, per Morgan Stanley Consumer0 码力 | 340 页 | 12.14 MB | 4 月前3
Gluon Deployment© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon Trademark Deploying GluonCV models using TVM© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon with TVM© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon Trademark Deploy GluonCV Models https://arxiv.org/pdf/1907.02154.pdf© 2019, Amazon Web Services, Inc. or its Affiliates Amazon Trademark Overall Performance AWS DeepLens Acer aiSage NVIDIA Jetson Nano© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon Trademark Effects of Vision-specific0 码力 | 8 页 | 16.18 MB | 5 月前3
共 27 条
- 1
- 2
- 3













