积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部系统运维(19)网络与安全(19)后端开发(14)Julia(10)综合其他(5)人工智能(5)Go(3)数据库(1)Rust(1)

语言

全部英语(23)中文(繁体)(10)zh(5)中文(简体)(1)

格式

全部PDF文档 PDF(23)DOC文档 DOC(13)PPT文档 PPT(3)
 
本次搜索耗时 0.018 秒,为您找到相关结果约 39 个.
  • 全部
  • 系统运维
  • 网络与安全
  • 后端开发
  • Julia
  • 综合其他
  • 人工智能
  • Go
  • 数据库
  • Rust
  • 全部
  • 英语
  • 中文(繁体)
  • zh
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • DOC文档 DOC
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • ppt文档 No Silver Bullet – Essence and Accident in Software Engineering

    No Silver Bullet – Essence and Accident in Software Engineering Mike Ballou“There is no single development, in either technology or management technique, which by itself promises even one order-of- in simplicity.”Abstract “All software construction involves essential tasks, the fashioning of the complex conceptual structures that compose the abstract software entity, and accidental tasks, the onto machine languages within space and speed constraints.”Abstract “Most of the big gains in software productivity have come from removing artificial barriers that have made the accidental tasks inordinately
    0 码力 | 35 页 | 1.43 MB | 5 月前
    3
  • pdf文档 MITRE Defense Agile Acquisition Guide - Mar 2014

    to succeed in an increasingly complex environment. Agile has emerged as the leading industry software development methodology, and has seen growing adoption across the DoD and other federal agencies these objectives through:  Focusing on small, frequent capability releases  Valuing working software over comprehensive documentation  Responding rapidly to changes in operations, technology, practices integrate planning, design, development, and testing into an iterative lifecycle to deliver software at frequent intervals. Developers can demonstrate interim capabilities to users and stakeholders
    0 码力 | 74 页 | 3.57 MB | 5 月前
    3
  • pdf文档 Trends Artificial Intelligence

    Stanford University… 1: AI ‘Winter’ was a term used by Nils J. Nilsson, the Kumagai Professor of Engineering in computer science at Stanford University, to describe the period during which AI continued to hypothetical endpoint, but as a reachable threshold. If / when achieved, AGI would redefine what software (and related hardware) can do. Rather than executing pre-programmed tasks, AGI systems would understand understand goals, generate plans, and self-correct in real time. They could drive research, engineering, education, and logistics workflows with little to no human oversight – handling ambiguity and novelty
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • ppt文档 Introduction

    September 1. Topics from software engineering to implement/use X in Golang app 2. Software engineering + tech leadership topics 3. Your experience building your software Maybe one of your work colleagues
    0 码力 | 8 页 | 27.61 MB | 5 月前
    3
  • pdf文档 Introduction

    September 1. Topics from software engineering to implement/use X in Golang app 2. Software engineering + tech leadership topics 3. Your experience building your software Maybe one of your work colleagues
    0 码力 | 8 页 | 379.61 KB | 5 月前
    3
  • word文档 The DevOps Handbook

    environments (to include production, pre-production, and CD pipeline) iii. Ian Malpass, Etsy – “If Engineering at Etsy has a religion, it’s the Church of Graphs. If it moves, we track it. Sometimes we’ll draw AND FILL ANY TELEMETRY GAPS i. Expand metrics from business, application, infrastructure, client software, and deployment pipeline levels 1. With every production incident identify missing telemetry that gets visceral feedback on upstream decisions. (Pedro Canahuati, Facebook Director of Production Engineering) iii. Find the proper balance between fixing production issues and new features development –
    0 码力 | 8 页 | 24.02 KB | 5 月前
    3
  • word文档 DoD CIO Enterprise DevSecOps Reference Design - Summary

    DevSecOps – Defined by DoD CIO DevSecOps is an organizational software engineering culture and practice that aims at unifying software development (Dev), security (Sec) and operations (Ops). The main main characteristic of DevSecOps is to automate, monitor, and apply security at all phases of the software lifecycle: plan, develop, build, test, release, deliver, deploy, operate, and monitor. In DevSecOps built simultaneously. Key Measures Mean-time to production: the average time it takes from when new software features are required until they are running in production. Average lead-time: how long it takes
    0 码力 | 8 页 | 3.38 MB | 5 月前
    3
  • word文档 The DevOps Handbook

    critical areas. ii. Michael Nygard, author of Release It! Design and Deploy Production-Ready Software, “If you do not design your failure modes, then you will get whatever unpredictable—and usually ii. Public knowledge versus private knowledge from emails b. AUTOMATE STANDARDIZED PROCESSES IN SOFTWARE FOR RE-USE i. Don’t store standards and processes in Word or non-actionable documents; leads to Security in the same manner as QA and operations b. Compliance checking is the opposite of security engineering c. INTEGRATE SECURITY INTO DEVELOPMENT ITERATION DEMONSTRATIONS i. Bring Infosec left; incorporate
    0 码力 | 9 页 | 25.13 KB | 5 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    responsive customer experiences. 3 AI in the EnterpriseBut leveraging AI isn’t the same as building software or deploying cloud apps. The most successful companies are often those who treat it as a new paradigm a process are best-placed to improve 
 it with AI. 06 Unblock your
 developers Automating the software development lifecycle can multiply 
 AI dividends. 07 Set bold 
 automation goals Most processes Developer resources are the main bottleneck and growth inhibitor in many organizations. 
 When engineering teams are overwhelmed, it slows innovation and creates an insurmountable backlog of apps and ideas
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 TVM: Where Are We Going

    Frameworks New operator introduced by operator fusion optimization potential benefit: 1.5x speedup Engineering intensiveMachine Learning based Program Optimizer TVM: Learning-based Learning System High-level board. • Move hardware complexity to software HW-SW Blueprint for Flexible Deep Learning Acceleration. Moreau et al. IEEE Micro 2019. VTA Hardware/Software Interface (ISA) VTA MicroArchitecture VTA
    0 码力 | 31 页 | 22.64 MB | 5 月前
    3
共 39 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
NoSilverBulletEssenceandAccidentinSoftwareEngineeringMITREDefenseAgileAcquisitionGuideMar2014TrendsArtificialIntelligenceIntroductionTheDevOpsHandbookDoDCIOEnterpriseDevSecOpsReferenceDesignSummaryOpenAIAItheTVMWhereAreWeGoing
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩