积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部系统运维(23)后端开发(16)网络与安全(15)综合其他(14)人工智能(14)Julia(10)存储(8)Go(3)Python(2)Tornado(2)

语言

全部英语(25)中文(繁体)(10)zh(9)中文(简体)(5)日语(2)[zh](1)kor(1)ro(1)

格式

全部PDF文档 PDF(40)DOC文档 DOC(11)PPT文档 PPT(2)其他文档 其他(1)
 
本次搜索耗时 0.442 秒,为您找到相关结果约 54 个.
  • 全部
  • 系统运维
  • 后端开发
  • 网络与安全
  • 综合其他
  • 人工智能
  • Julia
  • 存储
  • Go
  • Python
  • Tornado
  • 全部
  • 英语
  • 中文(繁体)
  • zh
  • 中文(简体)
  • 日语
  • [zh]
  • kor
  • ro
  • 全部
  • PDF文档 PDF
  • DOC文档 DOC
  • PPT文档 PPT
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PFS SPDK: Storage Performance Development Kit

    0 码力 | 23 页 | 4.21 MB | 6 月前
    3
  • pdf文档 Real-Time Unified Data Layers: A New Era for Scalable Analytics, Search, and AI

    Real-Time Unified Data Layer1. Introduction Data teams are facing more challenges than ever. As applications generate and consume unprecedented volumes of data across a growing number of sources and formats Equipment Effectiveness (OEE). Energy companies must balance EV charger loads and manage grid performance in real time. Banks need to analyze audit logs from their website and application in real time frauds. Logistics companies need real-time tracking and historical analysis of shipments, fleet performance, and warehouse operations to optimize delivery times, reduce costs, and improve supply chain efficiency
    0 码力 | 10 页 | 2.82 MB | 5 月前
    3
  • pdf文档 Tornado 6.5 Documentation

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 6.2 Web framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Python Module Index 257 Index 259 iiiTornado Documentation, Release 6.5.1 Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed. By using non-blocking tens of thousands of open connections, making it ideal for long polling, WebSockets, and other applications that require a long-lived connection to each user. CONTENTS 1Tornado Documentation, Release 6
    0 码力 | 272 页 | 1.12 MB | 3 月前
    3
  • epub文档 Tornado 6.5 Documentation

    Tornado [https://www.tornadoweb.org] is a Python web framework and asynchronous networking library, originally developed at FriendFeed [https://en.wikipedia.org/wiki/FriendFeed]. By using non-blocking org/wiki/Push_technology#Long_polling], WebSockets [https://en.wikipedia.org/wiki/WebSocket], and other applications that require a long-lived connection to each user. Quick links Current version: 6.5.1 (download s] Hello, world Here is a simple “Hello, world” example web app for Tornado: import asyncio import tornado class MainHandler(tornado.web.RequestHandler): def get(self): self.write("Hello
    0 码力 | 437 页 | 405.14 KB | 3 月前
    3
  • pdf文档 MITRE Defense Agile Acquisition Guide - Mar 2014

    or small-medium-large as units for assigning story points. Over time, as the teams accumulate performance data, this iterative and incremental4 process improves accuracy in allocating points. Point team to plan the amount of work to accomplish in the next sprint and continually measure its performance. Teams use burn down charts (Figure 3) to track progress during a sprint. Figure 3: Example mitigation strategy, since early working software products reduce risk by validating requirements and performance characteristics rather than by conducting exhaustive paper analysis. The requirements process
    0 码力 | 74 页 | 3.57 MB | 5 月前
    3
  • pdf文档 CurveBS IO Processing Flow

    Multi-replicas consistency 3. The client l Provides read and write data interfaces for upper-layer applications l Interacts with MDS to add, delete, modify, and query metadata l Interacts with the chunkServer possible to allocate space frequently at the beginning, but after the allocation is complete, performance recovers. 3. The Client queries the ChunkServer for the leader ChunkServer node of the copyset CurveBS, so metadata scalability is very good in this way. 2. Fs-data cluster is used to store file data. Curve-fuse Supports Object storage by S3 apis and CurveBS CurveBS performance considerations
    0 码力 | 13 页 | 2.03 MB | 6 月前
    3
  • pdf文档 Curve for CNCF Main

    Curve High performance Cloud native Distributed storage system https://www.opencurve.io/Agenda • What is Curve • Use Cases • CurveBS • Key Features • Comparing to Ceph • CurveFS • Comparing Block Storage (CurveBS) • CurveBS: a high performance cloud native distributed block storage • Curve File System (CurveFS) • CurveFS: a high performance cloud native file systemUse Cases • Container on-prem OSSCurveBS • high performance • mainly used for (SSD, three replicas) • csi / storage class for kubernete, nbd for HOST/VMPerformance (vs. Ceph RBD)Performance (vs. Ceph RBD)CurveBS Features
    0 码力 | 21 页 | 4.56 MB | 6 月前
    3
  • pdf文档 julia 1.10.10

    transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 29.4 External applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 29.5 Parallelization with backtrace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 34 Performance Tips 416 34.1 Performance critical code should be inside a function . . . . . . . . . . . . . . . . . 416 untyped global variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416 34.3 Measure performance with @time and pay attention to memory allocation . . . . . . 417 34.4 Tools . . . . . . . .
    0 码力 | 1692 页 | 6.34 MB | 3 月前
    3
  • pdf文档 Julia 1.10.9

    transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 29.4 External applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 29.5 Parallelization with backtrace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 34 Performance Tips 416 34.1 Performance critical code should be inside a function . . . . . . . . . . . . . . . . . 416 untyped global variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416 34.3 Measure performance with @time and pay attention to memory allocation . . . . . . 417 34.4 Tools . . . . . . . .
    0 码力 | 1692 页 | 6.34 MB | 3 月前
    3
  • pdf文档 Julia 1.11.4

    transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 30.4 External applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 30.5 Parallelization with backtrace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441 35 Performance Tips 444 35.1 Performance critical code should be inside a function . . . . . . . . . . . . . . . . . 444 untyped global variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444 35.3 Measure performance with @time and pay attention to memory allocation . . . . . . 445 35.4 Tools . . . . . . . .
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
共 54 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
前往
页
相关搜索词
PFSSPDKStoragePerformanceDevelopmentKitRealTimeUnifiedDataLayersNewEraforScalableAnalyticsSearchandAITornado6.5DocumentationMITREDefenseAgileAcquisitionGuideMar2014CurveBSIOProcessingFlowCurveCNCFMainjulia1.1010Julia1.11
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩