 Real-Time Unified Data Layers:
A New Era for Scalable Analytics,
Search, and AIUnified Data Layers: A New Era for Scalable Analytics, Search, and AI v 1.1Table of Contents Introduction 1. The Interconnection of Analytics, Search, and AI 2. What is a Real-Time Unified Data Layer Layer? 3. Why Do You Need a Real-Time Unified Data Layer? 4. 5.CrateDB: A Modern Real-Time Unified Data Layer1. Introduction Data teams are facing more challenges than ever. As applications generate and and consume unprecedented volumes of data across a growing number of sources and formats, data engineering and architecture teams must design systems that not only scale but also deliver real-time access0 码力 | 10 页 | 2.82 MB | 5 月前3 Real-Time Unified Data Layers:
A New Era for Scalable Analytics,
Search, and AIUnified Data Layers: A New Era for Scalable Analytics, Search, and AI v 1.1Table of Contents Introduction 1. The Interconnection of Analytics, Search, and AI 2. What is a Real-Time Unified Data Layer Layer? 3. Why Do You Need a Real-Time Unified Data Layer? 4. 5.CrateDB: A Modern Real-Time Unified Data Layer1. Introduction Data teams are facing more challenges than ever. As applications generate and and consume unprecedented volumes of data across a growing number of sources and formats, data engineering and architecture teams must design systems that not only scale but also deliver real-time access0 码力 | 10 页 | 2.82 MB | 5 月前3
 Trends Artificial Intelligence
datapoints turned into this beast. As soon as we updated one chart, we often had to update another – a data game of whack-a-mole… a pattern that shows no sign of stopping…and will grow more complex as competition related to the artificial intelligence technology evolution is indeed unprecedented, as supported by the data. This document is filled with user, usage and revenue charts that go up-and-to-the-right… often supported Threats = Rising Competition + Open-Source Momentum + China’s Rise • AI & Physical World Ramps = Fast + Data-Driven • Global Internet User Ramps Powered by AI from Get-Go = Growth We Have Not Seen Likes of0 码力 | 340 页 | 12.14 MB | 4 月前3 Trends Artificial Intelligence
datapoints turned into this beast. As soon as we updated one chart, we often had to update another – a data game of whack-a-mole… a pattern that shows no sign of stopping…and will grow more complex as competition related to the artificial intelligence technology evolution is indeed unprecedented, as supported by the data. This document is filled with user, usage and revenue charts that go up-and-to-the-right… often supported Threats = Rising Competition + Open-Source Momentum + China’s Rise • AI & Physical World Ramps = Fast + Data-Driven • Global Internet User Ramps Powered by AI from Get-Go = Growth We Have Not Seen Likes of0 码力 | 340 页 | 12.14 MB | 4 月前3
 Rust 程序设计语言 简体中文版 1.85.0error 现在我们已经了解了变量如何工作,让我们看看变量可以拥有的更多数据类型。 42/562Rust 程序设计语言 简体中文版 数据类型 在 Rust 中,每一个值都有一个特定 数据类型(data type),这告诉 Rust 它被指定为何种数 据,以便明确数据处理方式。我们将看到两类数据类型子集:标量(scalar)和复合 (compound)。 记住,Rust 是 静态类型(statically some_string.push_str(", world"); | ^^^^^^^^^^^ `some_string` is a `&` reference, so the data it refers to cannot be borrowed as mutable | help: consider changing this to be a mutable reference 防止同一时间对同一数据存在多个可变引 用。新 Rustacean 们经常难以适应这一点,因为大部分语言中变量任何时候都是可变的。这 个限制的好处是 Rust 可以在编译时就避免数据竞争。数据竞争(data race)类似于竞态条 件,它可由这三个行为造成: • 两个或更多指针同时访问同一数据。 • 至少有一个指针被用来写入数据。 • 没有同步数据访问的机制。 数据竞争会导致未定义行为,难以在运行时追踪,并且难以诊断和修复;Rust0 码力 | 562 页 | 3.23 MB | 25 天前3 Rust 程序设计语言 简体中文版 1.85.0error 现在我们已经了解了变量如何工作,让我们看看变量可以拥有的更多数据类型。 42/562Rust 程序设计语言 简体中文版 数据类型 在 Rust 中,每一个值都有一个特定 数据类型(data type),这告诉 Rust 它被指定为何种数 据,以便明确数据处理方式。我们将看到两类数据类型子集:标量(scalar)和复合 (compound)。 记住,Rust 是 静态类型(statically some_string.push_str(", world"); | ^^^^^^^^^^^ `some_string` is a `&` reference, so the data it refers to cannot be borrowed as mutable | help: consider changing this to be a mutable reference 防止同一时间对同一数据存在多个可变引 用。新 Rustacean 们经常难以适应这一点,因为大部分语言中变量任何时候都是可变的。这 个限制的好处是 Rust 可以在编译时就避免数据竞争。数据竞争(data race)类似于竞态条 件,它可由这三个行为造成: • 两个或更多指针同时访问同一数据。 • 至少有一个指针被用来写入数据。 • 没有同步数据访问的机制。 数据竞争会导致未定义行为,难以在运行时追踪,并且难以诊断和修复;Rust0 码力 | 562 页 | 3.23 MB | 25 天前3
 Julia 1.11.5 DocumentationMacro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 25.4 Communication and data-races between threads . . . . . . . . . . . . . . . . . . . 323 25.5 Side effects and mutable function 26.2 Starting and managing worker processes . . . . . . . . . . . . . . . . . . . . . . . 333 26.3 Data Movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 26.4 Global Global Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384 28.15 Accessing Data through a Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . 384 28.16 Thread-safety0 码力 | 2007 页 | 6.73 MB | 3 月前3 Julia 1.11.5 DocumentationMacro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 25.4 Communication and data-races between threads . . . . . . . . . . . . . . . . . . . 323 25.5 Side effects and mutable function 26.2 Starting and managing worker processes . . . . . . . . . . . . . . . . . . . . . . . 333 26.3 Data Movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 26.4 Global Global Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384 28.15 Accessing Data through a Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . 384 28.16 Thread-safety0 码力 | 2007 页 | 6.73 MB | 3 月前3
 Julia 1.11.6 Release NotesMacro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 25.4 Communication and data-races between threads . . . . . . . . . . . . . . . . . . . 323 25.5 Side effects and mutable function 26.2 Starting and managing worker processes . . . . . . . . . . . . . . . . . . . . . . . 333 26.3 Data Movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 26.4 Global Global Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384 28.15 Accessing Data through a Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . 384 28.16 Thread-safety0 码力 | 2007 页 | 6.73 MB | 3 月前3 Julia 1.11.6 Release NotesMacro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 25.4 Communication and data-races between threads . . . . . . . . . . . . . . . . . . . 323 25.5 Side effects and mutable function 26.2 Starting and managing worker processes . . . . . . . . . . . . . . . . . . . . . . . 333 26.3 Data Movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 26.4 Global Global Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384 28.15 Accessing Data through a Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . 384 28.16 Thread-safety0 码力 | 2007 页 | 6.73 MB | 3 月前3
 Julia 1.11.4Macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 25.4 Communication and data-races between threads . . . . . . . . . . . . . . . . . . . 323 25.5 Side effects and mutable function 26.2 Starting and managing worker processes . . . . . . . . . . . . . . . . . . . . . . . 333 26.3 Data Movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 26.4 Global Global Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383 28.15 Accessing Data through a Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . 384 28.16 Thread-safety0 码力 | 2007 页 | 6.73 MB | 3 月前3 Julia 1.11.4Macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 25.4 Communication and data-races between threads . . . . . . . . . . . . . . . . . . . 323 25.5 Side effects and mutable function 26.2 Starting and managing worker processes . . . . . . . . . . . . . . . . . . . . . . . 333 26.3 Data Movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 26.4 Global Global Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383 28.15 Accessing Data through a Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . 384 28.16 Thread-safety0 码力 | 2007 页 | 6.73 MB | 3 月前3
 Bring Your Own Codegen to TVMreserved. Amazon/Intel Confidentia Presenter: Zhi Chen, Cody Yu Amazon SageMaker Neo, Deep Engine Science Bring Your Own Codegen to TVM AWS AI© 2019, Amazon Web Services, Inc. or its Affiliates. All rights = relay.create_executor(“vm”, mod=mod, ctx=tvm.cpu(0)) data = np.random.uniform(size=(1, 3, 224, 224)).astype(“float32”) out = exe.evaluate()(data, **params) How Would That Look Like?© 2019, Amazon Web (inputs) can be checked as well Return True/False for this op After Annotation op op op op data weight1 weight3 weight2 output Subgraph begin Subgraph end© 2019, Amazon Web Services, Inc. or0 码力 | 19 页 | 504.69 KB | 5 月前3 Bring Your Own Codegen to TVMreserved. Amazon/Intel Confidentia Presenter: Zhi Chen, Cody Yu Amazon SageMaker Neo, Deep Engine Science Bring Your Own Codegen to TVM AWS AI© 2019, Amazon Web Services, Inc. or its Affiliates. All rights = relay.create_executor(“vm”, mod=mod, ctx=tvm.cpu(0)) data = np.random.uniform(size=(1, 3, 224, 224)).astype(“float32”) out = exe.evaluate()(data, **params) How Would That Look Like?© 2019, Amazon Web (inputs) can be checked as well Return True/False for this op After Annotation op op op op data weight1 weight3 weight2 output Subgraph begin Subgraph end© 2019, Amazon Web Services, Inc. or0 码力 | 19 页 | 504.69 KB | 5 月前3
 Dynamic Model in TVMAffiliates. All rights reserved. Presenter: Haichen Shen, Yao Wang Amazon SageMaker Neo, Deep Engine Science Dynamic Model in TVM AWS AI© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved shapes ○ Dynamic inputs: batch size, image size, sequence length, etc. ○ Output shape of some ops are data dependent: arange, nms, etc. ○ Control flow: concatenate within a while loop Limitation of TVM/graph modes (op_attrs, input_tensors, out_ndims) -> out_shape_tensors ○ Data dependent (op_attrs, input_data, out_ndims) -> out_shape_tensors ○ Data independent (op_attrs, input_shapes, out_ndims) -> out_shape_tensors©0 码力 | 24 页 | 417.46 KB | 5 月前3 Dynamic Model in TVMAffiliates. All rights reserved. Presenter: Haichen Shen, Yao Wang Amazon SageMaker Neo, Deep Engine Science Dynamic Model in TVM AWS AI© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved shapes ○ Dynamic inputs: batch size, image size, sequence length, etc. ○ Output shape of some ops are data dependent: arange, nms, etc. ○ Control flow: concatenate within a while loop Limitation of TVM/graph modes (op_attrs, input_tensors, out_ndims) -> out_shape_tensors ○ Data dependent (op_attrs, input_data, out_ndims) -> out_shape_tensors ○ Data independent (op_attrs, input_shapes, out_ndims) -> out_shape_tensors©0 码力 | 24 页 | 417.46 KB | 5 月前3
 julia 1.10.1025.2 Starting and managing worker processes . . . . . . . . . . . . . . . . . . . . . . . 314 25.3 Data Movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 25.4 Global Global Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 27.15 Accessing Data through a Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . 362 27.16 Thread-safety using views for slices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435 34.17 Copying data is not always bad . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435 34.18 Consider StaticArrays0 码力 | 1692 页 | 6.34 MB | 3 月前3 julia 1.10.1025.2 Starting and managing worker processes . . . . . . . . . . . . . . . . . . . . . . . 314 25.3 Data Movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 25.4 Global Global Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 27.15 Accessing Data through a Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . 362 27.16 Thread-safety using views for slices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435 34.17 Copying data is not always bad . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435 34.18 Consider StaticArrays0 码力 | 1692 页 | 6.34 MB | 3 月前3
 Julia 1.10.925.2 Starting and managing worker processes . . . . . . . . . . . . . . . . . . . . . . . 314 25.3 Data Movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 25.4 Global Global Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 27.15 Accessing Data through a Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . 362 27.16 Thread-safety using views for slices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435 34.17 Copying data is not always bad . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435 34.18 Consider StaticArrays0 码力 | 1692 页 | 6.34 MB | 3 月前3 Julia 1.10.925.2 Starting and managing worker processes . . . . . . . . . . . . . . . . . . . . . . . 314 25.3 Data Movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 25.4 Global Global Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 27.15 Accessing Data through a Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . 362 27.16 Thread-safety using views for slices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435 34.17 Copying data is not always bad . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435 34.18 Consider StaticArrays0 码力 | 1692 页 | 6.34 MB | 3 月前3
共 39 条
- 1
- 2
- 3
- 4














 
  
 