积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(12)Julia(10)综合其他(8)人工智能(8)系统运维(4)Python(2)Tornado(2)网络与安全(2)存储(2)数据库(1)

语言

全部中文(繁体)(10)英语(7)zh(4)[zh](1)日语(1)ro(1)中文(简体)(1)

格式

全部PDF文档 PDF(22)DOC文档 DOC(2)其他文档 其他(1)
 
本次搜索耗时 0.389 秒,为您找到相关结果约 25 个.
  • 全部
  • 后端开发
  • Julia
  • 综合其他
  • 人工智能
  • 系统运维
  • Python
  • Tornado
  • 网络与安全
  • 存储
  • 数据库
  • 全部
  • 中文(繁体)
  • 英语
  • zh
  • [zh]
  • 日语
  • ro
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • DOC文档 DOC
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 TVM: Where Are We Going

    optimized Open source, automated end-to- end optimization framework for deep learning.TVM Stack High-Level Differentiable IR Tensor Expression and Optimization Search Space LLVM, CUDA, Metal VTA Edge Edge FPGA Cloud FPGA ASIC Optimization AutoTVM Device FleetExisting Deep Learning Frameworks High-level data flow graph Hardware Primitive Tensor operators such as Conv2D eg. cuDNN Offload to FrameworksLimitations of Existing Approach cuDNN Frameworks New operator introduced by operator fusion optimization potential benefit: 1.5x speedup Engineering intensiveMachine Learning based Program Optimizer
    0 码力 | 31 页 | 22.64 MB | 5 月前
    3
  • pdf文档 Julia 1.11.4

    compute sin(tmp) in a separate loop, allocating a second array.] This loop fusion is not a compiler optimization that may or may not occur, it is a syntactic guarantee whenever nested f.(args...) calls are the method body. However, the actual caching behavior is an implementation-defined performance optimization, so it is invalid to depend too closely on this behavior. The number of times a generated function arguments. In this style of definition, the code generation feature is essentially an optional optimization. The compiler will use it if convenient, but otherwise may choose to use the normal implementation
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 Julia 1.11.5 Documentation

    compute sin(tmp) in a separate loop, allocating a second array.] This loop fusion is not a compiler optimization that may or may not occur, it is a syntactic guarantee whenever nested f.(args...) calls are the method body. However, the actual caching behavior is an implementation-defined performance optimization, so it is invalid to depend too closely on this behavior. The number of times a generated function arguments. In this style of definition, the code generation feature is essentially an optional optimization. The compiler will use it if convenient, but otherwise may choose to use the normal implementation
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 Julia 1.11.6 Release Notes

    compute sin(tmp) in a separate loop, allocating a second array.] This loop fusion is not a compiler optimization that may or may not occur, it is a syntactic guarantee whenever nested f.(args...) calls are the method body. However, the actual caching behavior is an implementation-defined performance optimization, so it is invalid to depend too closely on this behavior. The number of times a generated function arguments. In this style of definition, the code generation feature is essentially an optional optimization. The compiler will use it if convenient, but otherwise may choose to use the normal implementation
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 Julia 1.12.0 RC1

    compute sin(tmp) in a separate loop, allocating a second array.] This loop fusion is not a compiler optimization that may or may not occur, it is a syntactic guarantee whenever nested f.(args...) calls are the method body. However, the actual caching behavior is an implementation-defined performance optimization, so it is invalid to depend too closely on this behavior. The number of times a generated function arguments. In this style of definition, the code generation feature is essentially an optional optimization. The compiler will use it if convenient, but otherwise may choose to use the normal implementation
    0 码力 | 2057 页 | 7.44 MB | 3 月前
    3
  • pdf文档 Julia 1.12.0 Beta4

    compute sin(tmp) in a separate loop, allocating a second array.] This loop fusion is not a compiler optimization that may or may not occur, it is a syntactic guarantee whenever nested f.(args...) calls are the method body. However, the actual caching behavior is an implementation-defined performance optimization, so it is invalid to depend too closely on this behavior. The number of times a generated function arguments. In this style of definition, the code generation feature is essentially an optional optimization. The compiler will use it if convenient, but otherwise may choose to use the normal implementation
    0 码力 | 2057 页 | 7.44 MB | 3 月前
    3
  • pdf文档 Julia 1.12.0 Beta3

    compute sin(tmp) in a separate loop, allocating a second array.] This loop fusion is not a compiler optimization that may or may not occur, it is a syntactic guarantee whenever nested f.(args...) calls are the method body. However, the actual caching behavior is an implementation-defined performance optimization, so it is invalid to depend too closely on this behavior. The number of times a generated function arguments. In this style of definition, the code generation feature is essentially an optional optimization. The compiler will use it if convenient, but otherwise may choose to use the normal implementation
    0 码力 | 2057 页 | 7.44 MB | 3 月前
    3
  • pdf文档 julia 1.13.0 DEV

    compute sin(tmp) in a separate loop, allocating a second array.] This loop fusion is not a compiler optimization that may or may not occur, it is a syntactic guarantee whenever nested f.(args...) calls are the method body. However, the actual caching behavior is an implementation-defined performance optimization, so it is invalid to depend too closely on this behavior. The number of times a generated function arguments. In this style of definition, the code generation feature is essentially an optional optimization. The compiler will use it if convenient, but otherwise may choose to use the normal implementation
    0 码力 | 2058 页 | 7.45 MB | 3 月前
    3
  • pdf文档 julia 1.12.0 beta1

    compute sin(tmp) in a separate loop, allocating a second array.] This loop fusion is not a compiler optimization that may or may not occur, it is a syntactic guarantee whenever nested f.(args...) calls are the method body. However, the actual caching behavior is an implementation-defined performance optimization, so it is invalid to depend too closely on this behavior. The number of times a generated function arguments. In this style of definition, the code generation feature is essentially an optional optimization. The compiler will use it if convenient, but otherwise may choose to use the normal implementation
    0 码力 | 2047 页 | 7.41 MB | 3 月前
    3
  • pdf文档 PAI & TVM Meetup - Shanghai 20191116

    requirement of familiarity with WMMA API “Unified matmul schedule for GPU 。 Maintainability & Common Optimization Sharing 。 Search across the entire space (TensorCore + non-TensorCore) Our >olution wmma:mma_syncfcompute Jocalloj B_shareal_locollol A_sharea_locolloj compute_locallo族 了 了 Performance Optimization 计划了全事业部 “Same as non-TensorCore CUDA codegen 。Auto tune tiling sizes 。 Vectorized COMPUTING PLATFORM COMPUTING PLATFORM INT8 Inference on PAI- 引FTe[= PAI-Blade Model Analysis Graph optimization Blade Graph Optimizer TensorRT Customized OptimizeT TAO Compiler (XLA) cuUBLAS/VcuDNNVCUTL,
    0 码力 | 26 页 | 5.82 MB | 5 月前
    3
共 25 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
TVMWhereAreWeGoingJulia1.11DocumentationReleaseNotes1.12RC1Beta4Beta3julia1.13DEVbeta1PAIMeetupShanghai20191116
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩