积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(10)Julia(10)综合其他(7)人工智能(7)系统运维(2)网络与安全(2)数据库(1)

语言

全部中文(繁体)(10)英语(5)zh(4)[zh](1)

格式

全部PDF文档 PDF(19)PPT文档 PPT(1)
 
本次搜索耗时 0.153 秒,为您找到相关结果约 20 个.
  • 全部
  • 后端开发
  • Julia
  • 综合其他
  • 人工智能
  • 系统运维
  • 网络与安全
  • 数据库
  • 全部
  • 中文(繁体)
  • 英语
  • zh
  • [zh]
  • 全部
  • PDF文档 PDF
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Trends Artificial Intelligence

    but as a reachable threshold. If / when achieved, AGI would redefine what software (and related hardware) can do. Rather than executing pre-programmed tasks, AGI systems would understand goals, generate storage, but for real-time inference and model training workloads that require dense, high-power hardware. As AI moves from experimental to essential, so too do data centers. Per NVIDIA Co-Founder and the same time, the cost of applying/using these models – known as inference – is falling quickly. Hardware is improving – for example, NVIDIA’s 2024 Blackwell GPU consumes 105,000x less energy per token
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 TVM: Where Are We Going

    ChenCurrent Deep Learning Landscape Frameworks and Inference engines DL Compilers Kenrel Libraries Hardware CuDNN NNPack MKL-DNN Hand optimized Open source, automated end-to- end optimization framework Optimization AutoTVM Device FleetExisting Deep Learning Frameworks High-level data flow graph Hardware Primitive Tensor operators such as Conv2D eg. cuDNN Offload to heavily optimized DNN operator graph and optimizations Directly generate optimized program for new operator workloads and hardware Hardware FrameworksWhy Automation is the Future Clear winner on emerging models in product Competitive
    0 码力 | 31 页 | 22.64 MB | 5 月前
    3
  • pdf文档 Deploy VTA on Intel FPGA

    INTERNATIONAL INDUSTRIES, INCORPORATED 8 Hardware Configure Chisel VTA for DE10-Nano DEPLOY VTA ON INTEL FPGA©2019 HARMAN INTERNATIONAL INDUSTRIES, INCORPORATED 9 Hardware Datapath of Chisel VTA DEPLOY VTA VTA ON INTEL FPGA©2019 HARMAN INTERNATIONAL INDUSTRIES, INCORPORATED 10 Hardware DEPLOY VTA ON INTEL FPGA©2019 HARMAN INTERNATIONAL INDUSTRIES, INCORPORATED 11 Getting Started DEPLOY VTA ON INTEL FPGA vta/config/de10nano_config.json to vta_config.json Step 9: Go to vta/hardware/intel and run make command Step 10: Get the generated .sof file programmed into hardware Step 11: Evaluate the unit test script test_vta_insn
    0 码力 | 12 页 | 1.35 MB | 5 月前
    3
  • pdf文档 MITRE Defense Agile Acquisition Guide - Mar 2014

    milestones that ensure readiness to begin development of highly complex and tightly integrated hardware and software. However, Agile inherently serves as a risk mitigation strategy, since early working applies to programs with software costs over $15M and with COTS or Government off-the-Shelf (GOTS) hardware installation or technology refresh. It does not apply to business systems or IS embedded in weapon Key Questions to Validate Systems Engineering Strategies:  Does the program leverage existing hardware platforms?33  Does the design integrate mature technologies and align with enterprise architectures
    0 码力 | 74 页 | 3.57 MB | 5 月前
    3
  • ppt文档 No Silver Bullet – Essence and Accident in Software Engineering

    removing artificial barriers that have made the accidental tasks inordinately hard, such as severe hardware constraints, awkward programming languages, lack of machine time. How much of what software engineers desperate cries for a silver bullet – something to make software costs drop as rapidly as computer hardware costs do…. Not only are there no silver bullets now in view, the very nature of software makes breakthrough promises to give the sort of magical results with which we are so familiar in the hardware area, we must consider those attacks which address the essence of the software problem, the formulation
    0 码力 | 35 页 | 1.43 MB | 5 月前
    3
  • pdf文档 TVM Meetup Nov. 16th - Linaro

    been integrated by: ○ MATLAB Coder ○ ONNX RuntimeArm platform support in TVM upstream IPs Target Hardware/Model Options Codegen CPU arm_cpu pixel2 (snapdragon 835), mate10/mate10pro (kirin 970), p20/p20pro runtime plugins? ○ Integrate TVM codegen into Arm NN? ● CI and benchmark testing for TVM on member hardware platforms ○ Shall we maintain a list of Arm platforms supported by TVM? More details from our
    0 码力 | 7 页 | 1.23 MB | 5 月前
    3
  • pdf文档 Dynamic Model in TVM

    relay.vm.compile Relay Object (hardware independent) Code segment VM Func 0 VM Func 1 ... VM Func N Data segment Const 0 Const 1 ... Const K Kernel lib (hardware dependent) Packed Func 0 Packed
    0 码力 | 24 页 | 417.46 KB | 5 月前
    3
  • pdf文档 julia 1.10.10

    which can handle operations on numeric values that cannot be represented effectively in native hardware representations, but at the cost of relatively slower performance. The following are Julia's primitive floating-point numbers are also supported (Float16) on all platforms, with native instructions used on hardware which supports this number format. Otherwise, operations are implemented in software, and use Float32 to launch additional workers on the same host, thereby leveraging multi-core and multi-processor hardware. Thus, a minimal cluster manager would need to: • be a subtype of the abstract ClusterManager
    0 码力 | 1692 页 | 6.34 MB | 3 月前
    3
  • pdf文档 Julia 1.11.5 Documentation

    which can handle operations on numeric values that cannot be represented effectively in native hardware representations, but at the cost of relatively slower performance. The following are Julia's primitive perform modular arithmetic, mirroring the char- acteristics of integer arithmetic on modern computer hardware. In scenarios where overflow is a possibility, it is crucial to explicitly check for wraparound floating-point numbers are also supported (Float16) on all platforms, with native instructions used on hardware which supports this number format. Otherwise, operations are implemented in software, and use Float32
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 Julia 1.11.6 Release Notes

    which can handle operations on numeric values that cannot be represented effectively in native hardware representations, but at the cost of relatively slower performance. The following are Julia's primitive perform modular arithmetic, mirroring the char- acteristics of integer arithmetic on modern computer hardware. In scenarios where overflow is a possibility, it is crucial to explicitly check for wraparound floating-point numbers are also supported (Float16) on all platforms, with native instructions used on hardware which supports this number format. Otherwise, operations are implemented in software, and use Float32
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
共 20 条
  • 1
  • 2
前往
页
相关搜索词
TrendsArtificialIntelligenceTVMWhereAreWeGoingDeployVTAonIntelFPGAMITREDefenseAgileAcquisitionGuideMar2014NoSilverBulletEssenceandAccidentinSoftwareEngineeringMeetupNov16thLinaroDynamicModeljulia1.1010Julia1.11DocumentationReleaseNotes
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩