积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(11)人工智能(11)后端开发(10)Julia(10)系统运维(2)网络与安全(2)数据库(1)

语言

全部中文(繁体)(10)英语(7)zh(3)日语(1)kor(1)ro(1)中文(简体)(1)

格式

全部PDF文档 PDF(23)DOC文档 DOC(1)
 
本次搜索耗时 0.017 秒,为您找到相关结果约 24 个.
  • 全部
  • 综合其他
  • 人工智能
  • 后端开发
  • Julia
  • 系统运维
  • 网络与安全
  • 数据库
  • 全部
  • 中文(繁体)
  • 英语
  • zh
  • 日语
  • kor
  • ro
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Gluon Deployment

    Amazon Trademark Deploying GluonCV models using TVM© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon Trademark Deploy GluonCV Models GluonCV Models MXNet Computational Graph 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon Trademark Deploy GluonCV Models https://arxiv.org/pdf/1907.02154.pdf© 2019, Amazon Web Services, Inc. or its Affiliates. All Nano© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon Trademark Like GluonCV? Go build! https://gluon-cv.mxnet.io https://github.com/dmlc/gluon-cv© 2019, Amazon Web Services
    0 码力 | 8 页 | 16.18 MB | 5 月前
    3
  • pdf文档 Trends Artificial Intelligence

    digital datasets that have been in the making for over three decades; breakthrough large language models (LLMs) that – in effect – found freedom with the November 2022 launch of OpenAI’s ChatGPT with computers are ingesting massive datasets to get smarter and more competitive. Breakthroughs in large models, cost-per-token declines, open-source proliferation and chip performance improvements are making infrastructure: agentic interfaces, enterprise copilots, real-world autonomous systems, and sovereign models. Rapid advances in artificial intelligence, compute infrastructure, and global connectivity are
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    evals 6 Embed AI into your products 9 Start now and invest early 11 Customize and fine-tune your models 13 Get AI in the hands of experts 16 Unblock your developers 18 Set bold automation goals 21 research and deployment company, OpenAI prioritizes partnering with global companies because our models will increasingly do their best work with sophisticated, complex, interconnected workflows and systems teams. Our Research Team advances the foundations of AI, developing new models and capabilities. Our Applied Team turns those models into products, like ChatGPT Enterprise and our API. And our Deployment
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 TVM Meetup: Quantization

    its Affiliates. All rights reserved. Animesh Jain Amazon SageMaker Neo Compilation of Quantized Models in TVM AWS AI© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Quantization dataset • Finds suitable quantization scale • Produces a quantized graph • Compiling Pre-quantized models – QNN Dialect • TVM ingests a pre-quantized graph in TFLite or MxNet • Use high-level wrapper ops Frontend Parsers • TFLite Pre-quantized Models • In good shape • Supports all Image Classification PreQuantized hosted models • MXNet Pre-quantized Models • Tested internally with MxNet + MKLDNN
    0 码力 | 19 页 | 489.50 KB | 5 月前
    3
  • pdf文档 OctoML OSS 2019 11 8

    remumn dming data AutoTYM 二 QQ octoML Coming Soon to HTVM (Self-Hosted Models) Host Device mized RE -一 一 QQ octoML Transformer Improvements Transformer based models such as BERT have recently become very Popular and require first class support in TVML. ee What relay ONNX frontend to support all opset versions of BERT. 里This enables importing of native ONNX models and those converted from Tensorflow. 5 , Improve scheduling of batch matrix multiplies. 时”Early autotuning
    0 码力 | 16 页 | 1.77 MB | 5 月前
    3
  • pdf文档 Facebook -- TVM AWS Meetup Talk

    Unstructured Sparsity - Lots of 'free' wins from exploring sparsity in modern ML models - Can often prune models to 80%+ sparsity(with retraining) - Massive speedups combined with specialized code-generation
    0 码力 | 11 页 | 3.08 MB | 5 月前
    3
  • pdf文档 TVM: Where Are We Going

    workloads and hardware Hardware FrameworksWhy Automation is the Future Clear winner on emerging models in product Competitive on benchmarking type model Quickly enables other optimizations: fusion Dynamic shape workloads More runtime objects: Arrays, Tuples, Trees, ADTs Minimum runtime for dynamic models Credit: Jared Roesch, Haichen Shen et.aluTVM: TVM on bare-metal Devices Support bare-metal J-TAG
    0 码力 | 31 页 | 22.64 MB | 5 月前
    3
  • pdf文档 XDNN TVM - Nov 2019

    Xilinx Elliott Delaye FPGA CNN Accelerator and TVM© Copyright 2018 Xilinx TVM Target devices and models >> 2 HW Platforms ZCU102 ZCU104 Ultra96 PYNQ Face detection Pose estimation Video Video analytics Lane detection Object detection Segmentation Models© Copyright 2018 Xilinx Xilinx Cloud DPU Processor (xDNNv3) >> 3 ˃ Configurable Overlay Processor
    0 码力 | 16 页 | 3.35 MB | 5 月前
    3
  • pdf文档 Dynamic Model in TVM

    Dynamic Model in TVM AWS AI© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Models with dynamism ● Control flow (if, loop, etc) ● Dynamic shapes ○ Dynamic inputs: batch size, image concatenate within a while loop Limitation of TVM/graph runtime ● Cannot compile and run dynamic models© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Support dynamic model in
    0 码力 | 24 页 | 417.46 KB | 5 月前
    3
  • pdf文档 MITRE Defense Agile Acquisition Guide - Mar 2014

    this lack of well-documented research and of historical examples that other programs could use as models, we sought the views of experts representing diverse acquisition disciplines on how to appropriately organized, and managed, as well as whether the business processes, governance reviews, and funding models that support an acquisition are structured to support Agile. To succeed, the Agile model depends leverage to meet the DoDI 5000.02 requirements. Figure 8 provides a potential framework that adapts Models 2, 3, and Hybrid B from the Interim DoDI 5000.02 for an Agile program acquisition. Figure 8:
    0 码力 | 74 页 | 3.57 MB | 5 月前
    3
共 24 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
GluonDeploymentTrendsArtificialIntelligenceOpenAIAIintheEnterpriseTVMMeetupQuantizationOctoMLOSS201911FacebookAWSTalkWhereAreWeGoingXDNNNovDynamicModelMITREDefenseAgileAcquisitionGuideMar2014
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩