积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部系统运维(32)存储(19)综合其他(15)人工智能(15)后端开发(13)网络与安全(13)Julia(10)Python(2)Tornado(2)数据库(1)

语言

全部英语(19)中文(简体)(15)中文(繁体)(10)zh(9)日语(2)[zh](1)西班牙语(1)fj(1)kor(1)ro(1)

格式

全部PDF文档 PDF(49)DOC文档 DOC(9)PPT文档 PPT(2)其他文档 其他(1)
 
本次搜索耗时 0.019 秒,为您找到相关结果约 61 个.
  • 全部
  • 系统运维
  • 存储
  • 综合其他
  • 人工智能
  • 后端开发
  • 网络与安全
  • Julia
  • Python
  • Tornado
  • 数据库
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • zh
  • 日语
  • [zh]
  • 西班牙语
  • fj
  • kor
  • ro
  • 全部
  • PDF文档 PDF
  • DOC文档 DOC
  • PPT文档 PPT
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Dynamic Model in TVM

    rights reserved. Presenter: Haichen Shen, Yao Wang Amazon SageMaker Neo, Deep Engine Science Dynamic Model in TVM AWS AI© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Models with shapes ○ Dynamic inputs: batch size, image size, sequence length, etc. ○ Output shape of some ops are data dependent: arange, nms, etc. ○ Control flow: concatenate within a while loop Limitation of TVM/graph models© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Support dynamic model in TVM ● Support Any-dim in typing ● Use shape function to compute the type at runtime ● Virtual
    0 码力 | 24 页 | 417.46 KB | 5 月前
    3
  • pdf文档 Real-Time Unified Data Layers: A New Era for Scalable Analytics, Search, and AI

    Unified Data Layers: A New Era for Scalable Analytics, Search, and AI v 1.1Table of Contents Introduction 1. The Interconnection of Analytics, Search, and AI 2. What is a Real-Time Unified Data Layer Layer? 3. Why Do You Need a Real-Time Unified Data Layer? 4. 5.CrateDB: A Modern Real-Time Unified Data Layer1. Introduction Data teams are facing more challenges than ever. As applications generate and and consume unprecedented volumes of data across a growing number of sources and formats, data engineering and architecture teams must design systems that not only scale but also deliver real-time access
    0 码力 | 10 页 | 2.82 MB | 5 月前
    3
  • pdf文档 Trends Artificial Intelligence

    datapoints turned into this beast. As soon as we updated one chart, we often had to update another – a data game of whack-a-mole… a pattern that shows no sign of stopping…and will grow more complex as competition related to the artificial intelligence technology evolution is indeed unprecedented, as supported by the data. This document is filled with user, usage and revenue charts that go up-and-to-the-right… often supported Change Happening Faster Than Ever? Yes, It Is • AI User + Usage + CapEx Growth = Unprecedented • AI Model Compute Costs High / Rising + Inference Costs Per Token Falling = Performance Converging + Developer
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    They started with three model evals: 01 Language translation Measuring the accuracy and quality of translations produced 
 by a model. 02 Summarization Evaluating how a model condenses information, using resilient to change. 
 Evals are built around tasks that measure 
 the quality of the output of a model against 
 a benchmark—is it more accurate? More compliant? Safer? Your key metrics will depend on employees can focus on 
 the things only people can do. And because AI can process huge amounts of data from many sources, it can create customer experiences that feel more human because they’re more relevant
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 XDNN TVM - Nov 2019

    VGG16 ResNet-50 GoogleNet-V3 Aristotle on 7020 FPGA Iphone8plus Kirin 970 CPU MEM CONTROLLER BUS Data Mover IMG WR SCHEDULER WEIGHTS WR SCHEDULER SMART MEM FABRIC IMG RD SCHEDULER WEIGHTS RD >> 4© Copyright 2018 Xilinx Inference Flow >> 5 MxNet CPU Layers FPGA Layers Runtime Image Model Weights Calibration Set Quantizer Compiler Tensor Graph Optimization Framework Tensor Graph to attrs['output_layout'], attrs['model_name'], outs[0], *ins ), name=name) return out >> 10© Copyright 2018 Xilinx Example of FPGA node in TVM graph { "nodes": [ { "op": "null", "name": "data", "inputs": [] }
    0 码力 | 16 页 | 3.35 MB | 5 月前
    3
  • pdf文档 MITRE Defense Agile Acquisition Guide - Mar 2014

    small-medium-large as units for assigning story points. Over time, as the teams accumulate performance data, this iterative and incremental4 process improves accuracy in allocating points. Point values are culture often run counter to those in the long-established defense acquisition enterprise. The Agile model represents a change in the way DoD conducts business, and programs must rethink how they are staffed funding models that support an acquisition are structured to support Agile. To succeed, the Agile model depends on strong commitments at all levels of the acquisition process. First, Agile requires dedicated
    0 码力 | 74 页 | 3.57 MB | 5 月前
    3
  • pdf文档 TVM@AliOS

    accelerated NLU model @ 2018.10 OO 2019.4 OO 2019.8 AiOS 1驱动万物智能 @ 和 Yunqi Conf AR-Nav Product Show Lanenet Model 1.6X Intel AliOs TVM Arch Model 。 Facelandmark Upstream Master ) 。, Optimize on INT8 & FP32 AiiOS ! 驱动万物智能 Alios TVM @ ARM CPU INT8 * Cache 芍四 Data FO Data FOData … QNNPACK Convolution 。,NHWC layout Cach, 浆百 FeU Cach- 区下 。, re 。 Tensorize GEMM Cache 大站 Fe Data FO Data … FOData QNNPACK /NiiOS ! 驱动万物智能 P Cache 浆加 Data FO Data FOData … NHWC L2 da … FL2 da Alios TVM @ ARM CPU INT8 TVM /QNNPACK
    0 码力 | 27 页 | 4.86 MB | 5 月前
    3
  • pdf文档 TVM Meetup: Quantization

    Quantize Operator fn (%input_data: Tensor[(2, 5), float32]) { qnn.quantize(%input_data, out_dtype="uint8", output_zero_point=127, output_scale=0.5f) } def @main(%input_data: Tensor[(2, 5), float32]) -> -> Tensor[(2, 5), uint8] { %0 = divide(%input_data, 0.5f /* ty=float32 */) /* ty=Tensor[(2, 5), float32] */; %1 = round(%0) /* ty=Tensor[(2, 5), float32] */; %2 = cast(%1, dtype="int32") /* ty=Tensor[(2 conv2d fn (%data: Tensor[(1, 3, 2, 3), uint8], %weight: Tensor[(3, 3, 2, 2), uint8]) { qnn.conv2d(%data, %weight, … , out_dtype="int32", input_zero_point=1, kernel_zero_point=1)} def @main(%data: Tensor[(1
    0 码力 | 19 页 | 489.50 KB | 5 月前
    3
  • pdf文档 TVM@Alibaba AI Labs

    int8 int32 = int16 1 + int16 x int8 Alibaba Al.Labs 阿里巴巴人工智能实验室 CPU : MTK8167S (ARM32 A35 1.5GHz) Model : MobileNetV2_ 1.0_ 224 400 336 350 3丈 300 250 PowerVR GPU Alibaba Al.Labs 阿里巴巴人工智能实验室 PowerVR support by TVM NNVM Compiler -Execution graph -Model layers functions Computation Graph Optimizations -Param TvM Tensor Operators Algorithm &Schedule CUDA TOPI Backends Machine Learning Automated Optimizer Schedule explorer Cost model Mali TOPI ROCM TOPI PVRTOPI Alibaba Al.Labs 阿里巴巴人工智能实验室 PVR TOPI > TOPI for PVR,including what
    0 码力 | 12 页 | 1.94 MB | 5 月前
    3
  • word文档 A Seat at the Table - IT Leadership in the Age of Agility

    decisions under uncertainty, and then have the courage to face the consequences. In the plan-driven model, quality was easier to understand.  We specified what the system should do, and then measured quality that, either.  We are constantly making quality decisions, especially in a Continuous Delivery model, as we decide whether the quality of each individual feature is adequate for the feature to be deployed that we have not yet learned to take advantage of, caught up as we are in the contractor-control model of IT. Shadow IT is what happens when the IT organization is unable to meet the needs of a part of
    0 码力 | 7 页 | 387.48 KB | 5 月前
    3
共 61 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
前往
页
相关搜索词
DynamicModelinTVMRealTimeUnifiedDataLayersNewEraforScalableAnalyticsSearchandAITrendsArtificialIntelligenceOpenAItheEnterpriseXDNNNov2019MITREDefenseAgileAcquisitionGuideMar2014AliOSMeetupQuantizationAlibabaLabsSeatatTableITLeadershipAgeofAgility
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩