积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(12)系统运维(11)Julia(10)网络与安全(6)存储(5)综合其他(3)人工智能(3)Python(2)Tornado(2)

语言

全部英语(10)中文(繁体)(10)中文(简体)(5)kor(1)

格式

全部PDF文档 PDF(19)DOC文档 DOC(6)其他文档 其他(1)
 
本次搜索耗时 0.033 秒,为您找到相关结果约 26 个.
  • 全部
  • 后端开发
  • 系统运维
  • Julia
  • 网络与安全
  • 存储
  • 综合其他
  • 人工智能
  • Python
  • Tornado
  • 全部
  • 英语
  • 中文(繁体)
  • 中文(简体)
  • kor
  • 全部
  • PDF文档 PDF
  • DOC文档 DOC
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 NJSD eBPF 技术文档 - 0924版本

    析 • 对⽐测试 • ⽂件访问测试直接访问ext4 • 通过FUSE访问passthrough_ll底层ext4 • 内核调⽤延迟测试 • 与FUSE Daemon通讯120us左右,FUSE Daemon⼤概10us以内 • 瓶颈在/dev/fuse通讯开销基于FUSE可能的优化点 • 降低内核与libfuse通讯延迟 • 基于⽂件属性的操作内核直接返回? • vpp / f-stack / DirectFUSE • Kernel版本实现 • BentoFS 基于rust的实现采⽤LD_Preload⽅式瓶颈分析 • 环境 • FUSE daemon使⽤ passthrough_ll 调⽤底层ext4 • 进程共享内存通信延迟10us+ • others 开销 10us+ • fuse_ll_ops开销10us-基于FUSE的优化框架
    0 码力 | 20 页 | 7.40 MB | 6 月前
    3
  • pdf文档 PFS SPDK: Storage Performance Development Kit

    所以容易移植现有代码到PFS存储引擎 ●CurveBS对文件系统元数据的操作非常少,对文件系统的要求不高, 所以不需要元数据高性能,这方面PFS也合适10/17/22 6 对PFS的修改 ●基于阿里开源的PFS ●不再基于daemon模式,而是直接使用pfs core api ●依然向外提供管理工具, 例如 pfs ls、cp、rm等 ●增加spdk驱动10/17/22 7 新增PFS接口 ●增加pfs_pwritev和pfs_preadv接口 ●网络部分依赖内核tcp,不是零copy10/17/22 18 进展 ●还在测试CurveBS ●布置、监控等工具需要更新10/17/22 19 性能测试 ●使用pfs daemon测试 ●估计非daemon模式的会更快一点,因为没有跨进程开销10/17/22 20 Write,DMA write,Write-zero测试10/17/22 21 fio 4k 1个并发+单深度10/17/22
    0 码力 | 23 页 | 4.21 MB | 6 月前
    3
  • pdf文档 Trends Artificial Intelligence

    semi-borderless capital…all driving massive change. Sport provides a good analogy for AI’s constant improvements. As athletes continue to wow us and break records, their talent is increasingly enhanced by better Breakthroughs in large models, cost-per-token declines, open-source proliferation and chip performance improvements are making new tech advances increasingly more powerful, accessible, and economically viable algorithms, based on how much computing power you'd need to reach top performance without any improvements. Source: Epoch AI (3/24) Impact of Improved Algorithms on AI Model Performance – 2014-2023, per
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 Curve支持S3 数据缓存方案

    后台刷数据线程 本地磁盘缓存 关键数据结构 详细设计 Write流程 Read流程 ReleaseCache流程 Flush流程 FsSync流程 后台流程 poc测试验证 背景 基于s3的daemon版本基于基本的性能测试发现性能非常差。具体数据如下: 通过日志初步分析有2点原因© XXX Page 3 of 9 1.append接口目前采用先从s3 get,在内存中合并完后再put的方式,对s3操作过多 更新元数据,清理DataCache缓存,DataCacheNum_减1。 5.遍历完一轮DataCache后,获取DataCacheNum值,如果不为0,则继续遍历,如果为0则回到1步骤。 poc测试验证 根据上述设计,完成初步daemon,测试结果如下图 目前看写性能有明显的提升,但时延仍然很高, 。 需要进一步分析
    0 码力 | 9 页 | 179.72 KB | 6 月前
    3
  • pdf文档 OctoML OSS 2019 11 8

    contribute to TVML. ee Today we'ltouch on a few of those contribution areas: o Core Infrastructure Improvements to TVM o_uTVM: support for microcontrollers in TVM o_ Virtual Machine and dynamic NNs support High-Level 人 ORGREEE Te Conv2D mized RE -一 一 QQ octoML Transformer Improvements Transformer based models such as BERT have recently become very Popular and require first class many reshape operations, which are currently implemented using copy, 10 Virtual Machine e Many improvements from contributors at UW, AWS, and OctoML. e Initial implementation is quickly moving towards
    0 码力 | 16 页 | 1.77 MB | 5 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    complex, interconnected workflows and systems. We’re seeing AI deliver significant, measurable improvements on three fronts: 01 Workforce performance Helping people deliver higher-quality outputs in shorter deployment to learn quickly from customer use cases and use that information to accelerate product improvements. That means shipping updates regularly, getting feedback, and improving performance and safety through iteration. The earlier you start, the more your organization benefits from compounding improvements. Klarna, a global payments network and shopping platform, introduced a new AI assistant to
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • word文档 The Phoenix Project

    of Constraints “Eliyahu M. Goldratt, who created the Theory of Constraints, showed us how any improvements made anywhere besides the bottleneck are an illusion . Astonishing, but true useless, because it will always remain starved, waiting for work from the bottleneck. And any improvements made before the bottleneck merely results in more inventory piling up at the bottleneck.” Resource
    0 码力 | 3 页 | 154.45 KB | 5 月前
    3
  • pdf文档 Tornado 6.5 Documentation

    characters outside the Latin alphabet). 6.9.2 What’s new in Tornado 6.5.0 May 15, 2025 Security Improvements • Previously, malformed multipart-form-data requests could log multiple warnings and constitute on_message_callback is not deprecated. 6.9.3 What’s new in Tornado 6.4.2 Nov 21, 2024 Security Improvements • Parsing of the cookie header is now much more efficient. The older algorithm sometimes had 167Tornado Documentation, Release 6.5.1 6.9.4 What’s new in Tornado 6.4.1 Jun 6, 2024 Security Improvements • Parsing of the Transfer-Encoding header is now stricter. Unexpected transfer-encoding values
    0 码力 | 272 页 | 1.12 MB | 3 月前
    3
  • word文档 The DevOps Handbook

    ideas don’t work and reinforcing those that do3. local learnings are rapidly turned into global improvements, so that new techniques and practices can be used by the entire organization iii. ENABLING THE IMPROVEMENT OF DAILY WORK 1. Mike Rother observed in Toyota Kata that in the absence of improvements, processes don’t stay the same—due to chaos and entropy, processes actually degrade over time
    0 码力 | 8 页 | 22.57 KB | 5 月前
    3
  • word文档 The DevOps Handbook

    resilient systems with higher degrees of assurance 3. Ch. 20 – Convert Local Discoveries into Global Improvements a. USE CHAT ROOMS AND CHAT BOTS TO AUTOMATE AND CAPTURE ORGANIZATIONAL KNOWLEDGE i. ChatOps Goal is focused improvement on daily work, not experimentation and innovation iii. Demo back improvements at the completion of the blitz iv. Empower those closest to the work to continually identify
    0 码力 | 9 页 | 25.13 KB | 5 月前
    3
共 26 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
NJSDeBPF技术文档0924版本PFSSPDKStoragePerformanceDevelopmentKitTrendsArtificialIntelligenceCurve支持S3数据缓存方案OctoMLOSS201911OpenAIAIintheEnterpriseThePhoenixProjectTornado6.5DocumentationDevOpsHandbook
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩