积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部系统运维(11)网络与安全(11)后端开发(10)Julia(10)综合其他(9)人工智能(9)数据库(1)

语言

全部英语(15)中文(繁体)(10)zh(3)fj(1)kor(1)ro(1)

格式

全部PDF文档 PDF(21)DOC文档 DOC(9)PPT文档 PPT(1)
 
本次搜索耗时 0.025 秒,为您找到相关结果约 31 个.
  • 全部
  • 系统运维
  • 网络与安全
  • 后端开发
  • Julia
  • 综合其他
  • 人工智能
  • 数据库
  • 全部
  • 英语
  • 中文(繁体)
  • zh
  • fj
  • kor
  • ro
  • 全部
  • PDF文档 PDF
  • DOC文档 DOC
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Trends Artificial Intelligence

    Intelligence,’ a term he coined 1/62: Arthur Samuel, an IBM computer scientist, creates a self-learning program that proves capable of defeating a top USA checkers champion AI ‘Winter1’ (1967-1996) Trending = Unprecedented37 Machine-Learning Model* Trending = In 2015... Industry Surpassed Academia as Data + Compute + Financial Needs Rose *Machine Learning = A subset of AI where machines learn AI Index data provider, uses the term ‘notable machine learning models’ to designate particularly influential models within the AI/machine learning ecosystem. Epoch maintains a database of 900 AI models
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • word文档 The DevOps Handbook

    Part 5: The Third Way – The Technical Practices of Continual Learning and Experimentation; 1. Introduction a. Goal – practices to enable learning as quickly, frequently, cheaply, and as soon as possible safety, continuous improvement, and learning ii. Create mechanism to rapidly spread learning throughout the organization 2. Ch. 19 – Enable and Inject Learning into Daily Work a. Complex systems are Monkey; they architected for failure, tested for failure, and evolved beyond it b. ESTABLISH A JUST, LEARNING CULTURE i. Unjust responses to incidents 1. Impede safety 2. Promote fear over mindfulness
    0 码力 | 9 页 | 25.13 KB | 5 月前
    3
  • pdf文档 TVM: Where Are We Going

    TVM: Where are we going Tianqi ChenCurrent Deep Learning Landscape Frameworks and Inference engines DL Compilers Kenrel Libraries Hardware CuDNN NNPack MKL-DNN Hand optimized Open source, automated automated end-to- end optimization framework for deep learning.TVM Stack High-Level Differentiable IR Tensor Expression and Optimization Search Space LLVM, CUDA, Metal VTA Edge FPGA Cloud FPGA FPGA ASIC Optimization AutoTVM Device FleetExisting Deep Learning Frameworks High-level data flow graph Hardware Primitive Tensor operators such as Conv2D eg. cuDNN Offload to heavily optimized
    0 码力 | 31 页 | 22.64 MB | 5 月前
    3
  • word文档 The DevOps Handbook

    as quickly as possible, in minutes, not months.” e. The Third Way: The Principles of Continual Learning and Experimentation 37 i. culture of fear and low trust 1. workers who make mistakes are punished viewed as whistle-blowers and troublemakers 3. leadership is actively suppressing, even punishing, learning and improvement, perpetuating quality and safety problems ii. high-trust culture 1. we are all new techniques and practices can be used by the entire organization iii. ENABLING ORGANIZATIONAL LEARNING AND A SAFETY CULTURE 1. When we work within a complex system, by definition it is impossible for
    0 码力 | 8 页 | 22.57 KB | 5 月前
    3
  • word文档 A Seat at the Table: IT Leadership in the Age of Agility - Part 2

    decisions in an uncertain world, the subject of the next chapter—by quickly deploying functionality, learning, and adjusting plans.  We can conduct experiments that test the assumptions in our business cases risk by only committing resources to the smallest piece of work that would give us such useful learning.  we would gauge progress by seeing operational results . Agile and Lean approaches allow teams boundaries for planning. A detailed plan is a less effective basis for governance than validated learning based on actual delivery. The more advance planning we do, the longer it takes to get a product
    0 码力 | 7 页 | 387.61 KB | 5 月前
    3
  • word文档 A Seat at the Table - IT Leadership in the Age of Agility

    a kind of failure that is the opposite of defects and outages.  Trying things out is a way of learning in the Agile world; it is a kind of feedback cycle that lets us make good decisions in the normal The critical change is that of moving from a plan-driven approach to an Agile approach, based on learning and adapting. This is deeply opposed—let me say that again—deeply opposed to the control paradigm responsive to change, and by demonstrating the value of information, IT can lead the organization in learning and in deriving business value from good risk management and from making the most of opportunities
    0 码力 | 7 页 | 387.48 KB | 5 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    accepting inefficient processes as a cost of doing business. 21 AI in the EnterpriseConclusion Learning from each other As the previous examples show, every business is full of opportunities to harness every workflow. They’re aligning around high-return, low-effort use cases, learning as they iterate, then taking that learning into new areas. The results are clear and measurable: faster, more accurate
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • word文档 The DevOps Handbook

    hiding telemetry, deflection 1. Prevents creation of institutional knowledge about incidents and learning needed to prevent them in the future ii. Use for fact-based problem-solving e. ENABLE CREATION not external board approval ii. Peer review help improve overall quality, provide cross-training, learning, and skill improvements. iii. Keep batch sizes of reviews small iv. 4 simple Peer Review Guidelines
    0 码力 | 8 页 | 24.02 KB | 5 月前
    3
  • pdf文档 MITRE Defense Agile Acquisition Guide - Mar 2014

    of the user stories or lacks some necessary skillsets, or the introduction of a new tool added a learning curve for the team. Teams may defer user stories from sprint to sprint because of poor estimation Delivery in the Enterprise by Scott W. Ambler and Mark Lines  Changing Software Development: Learning to Become Agile by Allan Kelly Agile Organizations  Agile Alliance  PMI Agile  ADAPT
    0 码力 | 74 页 | 3.57 MB | 5 月前
    3
  • pdf文档 TVM Meetup Nov. 16th - Linaro

    16th, 2019Bringing together the Arm ecosystemLinaro AI Initiative Provide the best-in-class Deep Learning performance by leveraging Neural Network acceleration in IP and SoCs from the Arm ecosystem, through
    0 码力 | 7 页 | 1.23 MB | 5 月前
    3
共 31 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
TrendsArtificialIntelligenceTheDevOpsHandbookTVMWhereAreWeGoingSeatattheTableITLeadershipinAgeofAgilityPartOpenAIAIEnterpriseMITREDefenseAgileAcquisitionGuideMar2014MeetupNov16thLinaro
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩