积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(13)综合其他(12)人工智能(12)Julia(10)Python(2)Tornado(2)系统运维(1)Rust(1)网络与安全(1)

语言

全部中文(繁体)(10)zh(5)英语(4)中文(简体)(3)[zh](1)fj(1)日语(1)ro(1)

格式

全部PDF文档 PDF(24)DOC文档 DOC(1)其他文档 其他(1)
 
本次搜索耗时 0.217 秒,为您找到相关结果约 26 个.
  • 全部
  • 后端开发
  • 综合其他
  • 人工智能
  • Julia
  • Python
  • Tornado
  • 系统运维
  • Rust
  • 网络与安全
  • 全部
  • 中文(繁体)
  • zh
  • 英语
  • 中文(简体)
  • [zh]
  • fj
  • 日语
  • ro
  • 全部
  • PDF文档 PDF
  • DOC文档 DOC
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Rust 程序设计语言 简体中文版 1.85.0

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5. 使用结构体组织相关联的数据 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 7. 使用包、Crate 和模块管理不断增长的项目 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 7.4. 使用 use 关键字将路径引入作用域 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
    0 码力 | 562 页 | 3.23 MB | 26 天前
    3
  • pdf文档 人工智能安全治理框架 1.0

    人工智能安全开发应用指引 ……………………………… 12 6.1 模型算法研发者安全开发指引 ……………………… 12 6.2 人工智能服务提供者安全指引 ……………………… 13 6.3 重点领域使用者安全应用指引 ……………………… 14 6.4 社会公众安全应用指引 ……………………………… 15 目 录- 1 - 人工智能安全治理框架 人工智能是人类发展新领域,给世界带来巨大机遇,也带来各类风险挑战。 制和方式,对确需政府监管事项及时予以响应。 1.3 技管结合、协同应对。面向人工智能研发应用全过程,综合运用技术、 管理相结合的安全治理措施,防范应对不同类型安全风险。围绕人工智能研发 应用生态链,明确模型算法研发者、服务提供者、使用者等相关主体的安全责 任,有机发挥政府监管、行业自律、社会监督等治理机制作用。 1.4 开放合作、共治共享。在全球范围推动人工智能安全治理国际合作, 共享最佳实践,提倡建立开放性平台,通过跨学科、跨领域、跨地区、跨国界 、重点 领域用户和社会公众用户,开发应用人工智能技术的若干安全指导规范。 3. 人工智能安全风险分类 人工智能系统设计、研发、训练、测试、部署、使用、维护等生命周期 各环节都面临安全风险,既面临自身技术缺陷、不足带来的风险,也面临不当 使用、滥用甚至恶意利用带来的安全风险。 3.1 人工智能内生安全风险 3.1.1 模型算法安全风险 (a)可解释性差的风险。以深度学习为代表的人工智能算法内部运行逻
    0 码力 | 20 页 | 3.79 MB | 1 月前
    3
  • pdf文档 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502

    传统软件是辅助人的工具,Agent是能够自主工作的数字员工,是新的生产力政企、创业者必读 22 DeepSeek出现之前的十大预判 之九 开源效果追赶上闭源  技术开放,吸引广大开发人员和用户使用  很多公司参与开源,帮助改进产品,众人拾柴火焰高, 反哺开源产品,形成正循环政企、创业者必读 DeepSeek出现之前的十大预判 之十 中美差距快速缩小  美国预训练堆算力的路线不可持续,有待发现新范式“换道超车” DeepSeek的出现验证了我们的预判 而DeepSeek的创新更具颠覆性 24政企、创业者必读 DeepSeek是完美的颠覆式创新  技术创新——让过去做不到的事情可以做到  体验创新——让使用起来很难很复杂的东西变得很简单易用  市场推广创新——让过去很难得到的东西可以得到  商业模式创新——让过去很昂贵的东西变得很便宜甚至免费 DeepSeek正是符合这四种创新模式的完美例子 25 例:课后作业 仔细思考政企、创业者必读 DeepSeek-R1是AI发展史上的重要里程碑 R1形成了新的AGI定律,加速了AGI发展 Alpha Zero时刻 • Alpha Go采用监督学习, 使用人类棋谱训练 • Alpha Zero采用强化学习, 自己跟自己对弈 ChatGPT时刻 • OpenAI ChatGPT大模型, 通过预训练方式,实现涌 现,理解人类语言和知识 • 诞生预训练Scaling
    0 码力 | 76 页 | 5.02 MB | 5 月前
    3
  • pdf文档 XDNN TVM - Nov 2019

    20% 40% 60% 80% 100% VGG16 ResNet-50 GoogleNet-V3 Aristotle on 7020 FPGA Iphone8plus Kirin 970 CPU MEM CONTROLLER BUS Data Mover IMG WR SCHEDULER WEIGHTS WR SCHEDULER SMART MEM FABRIC IMG RD Efficiency > 50% for mainstream neural networks >> 4© Copyright 2018 Xilinx Inference Flow >> 5 MxNet CPU Layers FPGA Layers Runtime Image Model Weights Calibration Set Quantizer Compiler Tensor Graph TVM Partitioning >> 7 Subgraph 1 Parallel Subgraphs Post-Processing Pre-Processing FPGA or CPU FPGA CPU CPU FPGA - More than supported/not supported, pattern matching graph colorization - Choices how
    0 码力 | 16 页 | 3.35 MB | 5 月前
    3
  • pdf文档 TVM@AliOS

    TVMQ@Alios AIOS ! 驱动万物智能 PRESENTATION AGENDA 人 人 e 人 e@ TVM Q@ AliOs Overview TVM @ AliOs ARM CPU TVM @ AliOos Hexagon DSP TVM @ Alios Intel GPU Misc /NiiOS ! 驱动万物智能 PART ONE TVM Q@ AliOs Overview Multimodal Interection CPU (ARM、Intel) 1驱动万物智能 Accelerated Op Library / Others Inference Engine DSP (Qualcomm) PART TWO Alios TVM @ ARM CPU AiOS 1驱动万物智能 Alios TVMQOARM CPU 。 Support TFLite ( Open Open Source and Upstream Master ) 。, Optimize on INT8 & FP32 AiiOS ! 驱动万物智能 Alios TVM @ ARM CPU INT8 * Cache 芍四 Data FO Data FOData … QNNPACK Convolution 。,NHWC layout Cach, 浆百
    0 码力 | 27 页 | 4.86 MB | 5 月前
    3
  • pdf文档 Bring Your Own Codegen to TVM

    build_extern(mod, “dnnl”) 4. Run the inference exe = relay.create_executor(“vm”, mod=mod, ctx=tvm.cpu(0)) data = np.random.uniform(size=(1, 3, 224, 224)).astype(“float32”) out = exe.evaluate()(data, **params) Relay Runtime (VM, Graph Runtime, Interpreter) Your Dispatcher Target Device General Devices (CPU/GPU/FPGA) Mark supported operators or subgraphs 1. Implement an operator-level annotator, OR 2. Implement Relay Runtime (VM, Graph Runtime, Interpreter) Your Dispatcher Target Device General Devices (CPU/GPU/FPGA) Mark supported operators or subgraphs 1. Implement extern operator functions, OR 2. Implement
    0 码力 | 19 页 | 504.69 KB | 5 月前
    3
  • pdf文档 Julia 1.11.4

    Memory-mapped I/O 1615 83 Network Options 1618 84 Pkg 1622 85 Printf 1626 86 Profiling 1629 86.1 CPU Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1629 86.2 Via multi-threading provides the ability to schedule Tasks simultaneously on more than one thread or CPU core, sharing memory. This is usually the easiest way to get parallelism on one's PC or on a single as part of the standard library shipped with Julia. Most modern computers possess more than one CPU, and several computers can be combined together in a cluster. Harnessing the power of these multiple
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 Julia 1.11.5 Documentation

    Memory-mapped I/O 1615 83 Network Options 1618 84 Pkg 1622 85 Printf 1626 86 Profiling 1629 86.1 CPU Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1629 86.2 Via multi-threading provides the ability to schedule Tasks simultaneously on more than one thread or CPU core, sharing memory. This is usually the easiest way to get parallelism on one's PC or on a single as part of the standard library shipped with Julia. Most modern computers possess more than one CPU, and several computers can be combined together in a cluster. Harnessing the power of these multiple
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 Julia 1.11.6 Release Notes

    Memory-mapped I/O 1615 83 Network Options 1618 84 Pkg 1622 85 Printf 1626 86 Profiling 1629 86.1 CPU Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1629 86.2 Via multi-threading provides the ability to schedule Tasks simultaneously on more than one thread or CPU core, sharing memory. This is usually the easiest way to get parallelism on one's PC or on a single as part of the standard library shipped with Julia. Most modern computers possess more than one CPU, and several computers can be combined together in a cluster. Harnessing the power of these multiple
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 julia 1.13.0 DEV

    Memory-mapped I/O 1679 85 Network Options 1682 86 Pkg 1686 87 Printf 1690 88 Profiling 1693 88.1 CPU Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1693 88.2 Via multi-threading provides the ability to schedule Tasks simultaneously on more than one thread or CPU core, sharing memory. This is usually the easiest way to get parallelism on one's PC or on a single as part of the standard library shipped with Julia. Most modern computers possess more than one CPU, and several computers can be combined together in a cluster. Harnessing the power of these multiple
    0 码力 | 2058 页 | 7.45 MB | 3 月前
    3
共 26 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
Rust程序设计程序设计语言简体中文文版中文版简体中文版1.85人工智能人工智能安全治理框架1.0周鸿祎清华演讲DeepSeek我们带来创业机会360202502XDNNTVMNov2019AliOSBringYourOwnCodegentoJulia1.11DocumentationReleaseNotesjulia1.13DEV
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩