积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(17)人工智能(17)后端开发(13)系统运维(12)网络与安全(12)Julia(10)Python(2)Tornado(2)数据库(1)Rust(1)

语言

全部英语(19)中文(繁体)(10)zh(6)中文(简体)(3)[zh](1)fj(1)日语(1)kor(1)ro(1)

格式

全部PDF文档 PDF(32)DOC文档 DOC(9)PPT文档 PPT(1)其他文档 其他(1)
 
本次搜索耗时 0.026 秒,为您找到相关结果约 43 个.
  • 全部
  • 综合其他
  • 人工智能
  • 后端开发
  • 系统运维
  • 网络与安全
  • Julia
  • Python
  • Tornado
  • 数据库
  • Rust
  • 全部
  • 英语
  • 中文(繁体)
  • zh
  • 中文(简体)
  • [zh]
  • fj
  • 日语
  • kor
  • ro
  • 全部
  • PDF文档 PDF
  • DOC文档 DOC
  • PPT文档 PPT
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 OpenAI - AI in the Enterprise

    AI in the Enterprise Lessons from seven frontier companiesContents A new way to work 3 Executive summary 5 Seven lessons for enterprise AI adoption Start with evals 6 Embed AI into your products models 13 Get AI in the hands of experts 16 Unblock your developers 18 Set bold automation goals 21 Conclusion 22 More resources 24 2 AI in the EnterpriseA new way 
 to work As an AI research and complex, interconnected workflows and systems. We’re seeing AI deliver significant, measurable improvements on three fronts: 01 Workforce performance Helping people deliver higher-quality outputs in shorter
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 TVM@Alibaba AI Labs

    cooperatively fetch dependent data out_channel WwWly, pm Bly zx) https://docstvm ai/ PVR TOPI Alibaba ALLabs 阿里巴巴人工智能实验室 Blocking Splits the workload into thread blocks (work
    0 码力 | 12 页 | 1.94 MB | 5 月前
    3
  • pdf文档 Manus AI:Agent元年开启

    2025!3" Manus AI!Agent"#$ChatGPT%& #$% SAC NO. S0570519080006 | SFC NO. BQZ938 &'( SAC NO. S05701220801381 !"#$%&'() !"#$ • !"#$%&'()*AI+!"#$,-./012334%&'(56789:;<=>?@A BC%&'() • DEFGHI)*DEFGJKH abcde&fghi=>.gjklmno5pqLr?E=PstOuv5w%xyabz {|L}=>~}m•O2€.jk• • ‚ƒc„…†Agent…‡ˆAGIO‰Š‹Œ•1 Manus AI!"#$%&'Agent3 Manus AI%&'() • Manus !"#$%&'()*+,-./012345-6708,9):;<=>Manus ?@A+'BCDEFGHIJK,LMN OPQMR<"S>TUVWXY3 "#$%Bloomberg*&'()4 Manus AI%*+,- !"#$%Bloomberg*&'()5 Manus AI%./01 • GAIA !"#%‡•ž$% AI Ÿ G¡¢ž£,¤¥-UL6¦§¨©ª«Level 1cLevel 2cLevel 3¬G-•>Manus AI L®‰¯# §¨©ª°±²³{´µG SOTA œ=> • Manus AI ¶·fgG$%JKA+)€,¸¹!Lº»JK«Level
    0 码力 | 23 页 | 4.87 MB | 5 月前
    3
  • pdf文档 Real-Time Unified Data Layers: A New Era for Scalable Analytics, Search, and AI

    Layers: A New Era for Scalable Analytics, Search, and AI v 1.1Table of Contents Introduction 1. The Interconnection of Analytics, Search, and AI 2. What is a Real-Time Unified Data Layer? 3. Why Do Equipment Effectiveness (OEE). Energy companies must balance EV charger loads and manage grid performance in real time. Banks need to analyze audit logs from their website and application in real time frauds. Logistics companies need real-time tracking and historical analysis of shipments, fleet performance, and warehouse operations to optimize delivery times, reduce costs, and improve supply chain efficiency
    0 码力 | 10 页 | 2.82 MB | 5 月前
    3
  • pdf文档 Trends Artificial Intelligence

    IntelligenceTrends – Artificial Intelligence (AI) May 30, 2025 Mary Meeker / Jay Simons / Daegwon Chae / Alexander Krey2 Context We set out to compile foundational trends related to AI. A starting collection of several ’ At the time, the pace of change catalyzed by the internet was unprecedented. Consider now that AI user and usage trending is ramping materially faster…and the machines can outpace us. The pace and OpenAI’s ChatGPT with its extremely easy-to-use / speedy user interface. In addition, relatively new AI company founders have been especially aggressive about innovation / product releases / investments
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 TVM Meetup Nov. 16th - Linaro

    Jammy Zhou November 16th, 2019Bringing together the Arm ecosystemLinaro AI Initiative Provide the best-in-class Deep Learning performance by leveraging Neural Network acceleration in IP and SoCs from the the Arm ecosystem, through collaborative seamless integration with the ecosystem of AI/ML software frameworks and librariesArm NN open source project ● Linaro-hosted https://www.mlplatform.org/ ● Git or WIP: Hexagon DSP (via llvm), Ascend NPU, and more Green: Linaro 96BoardsLinaro for TVM ● Linaro AI/ML group can be a good fit for TVM collaborations on Arm based platforms to support more devices with
    0 码力 | 7 页 | 1.23 MB | 5 月前
    3
  • pdf文档 Tornado 6.5 Documentation

    threads are not appropriate. Platforms: Tornado is designed for Unix-like platforms, with best performance and scalability on systems supporting epoll (Linux), kqueue (BSD/macOS), or /dev/poll (Solaris) a way that is transparent to its callers (systems like gevent use lightweight threads to offer performance comparable to asynchronous systems, but they do not actually make things asynchronous). Asynchronous faking a root apple-touch-icon.png by using the appropriate tag in your HTML. To improve performance, it is generally a good idea for browsers to cache static resources aggressively so browsers won’t
    0 码力 | 272 页 | 1.12 MB | 3 月前
    3
  • pdf文档 OctoML OSS 2019 11 8

    project. A goal is to nurture the TVM community and contribute new infrastructure and features. octom|.ai @octoml Q octoML Founding Team - The Octonauts - 四人全外日 Luis Ceze Jason Knight Tensorflow. 5 , Improve scheduling of batch matrix multiplies. 时”Early autotuning templates improve performance by ~20% e What we're working on: This prevents most compute layers from being fused. Reshape Seattle WA Register Todayl! QQ octoML tvmconf.org 15 Q OctoML Questions? We are hiring see octoml.ai for more detailsl
    0 码力 | 16 页 | 1.77 MB | 5 月前
    3
  • pdf文档 Bring Your Own Codegen to TVM

    to TVM AWS AI© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Considering You... Design and manufacture a deep learning chip which achieves amazing performance on widely-used Q&A System Prototyping https://github.com/apache/incubator-tvm/pull/4258 RFC https://discuss.tvm.ai/t/bring-your-own-codegen-to-tvm/4501© 2019, Amazon Web Services, Inc. or its Affiliates. All rights
    0 码力 | 19 页 | 504.69 KB | 5 月前
    3
  • pdf文档 TVM Meetup: Quantization

    All rights reserved. Animesh Jain Amazon SageMaker Neo Compilation of Quantized Models in TVM AWS AI© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Quantization Overview • reserved. QNN Conv2D Operator • Calculations are different from FP32 Conv2D https://discuss.tvm.ai/t/tf-lite-quantized-conv2d-operator-conversion/2651/8 𝑟𝑒𝑎𝑙_𝑣𝑎𝑙𝑢𝑒 = 𝒔𝒄𝒂𝒍𝒆 ∗ (𝑞𝑢𝑎� reserved. Accuracy© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Performance Comparison • Metric – Latency in ms for batch size = 1 • 1.7x speedup on Inception asymmetric
    0 码力 | 19 页 | 489.50 KB | 5 月前
    3
共 43 条
  • 1
  • 2
  • 3
  • 4
  • 5
前往
页
相关搜索词
OpenAIAIintheEnterpriseTVMAlibabaLabsManusAgent元年开启RealTimeUnifiedDataLayersNewEraforScalableAnalyticsSearchandTrendsArtificialIntelligenceMeetupNov16thLinaroTornado6.5DocumentationOctoMLOSS201911BringYourOwnCodegentoQuantization
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩