积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(14)人工智能(14)后端开发(13)Julia(10)系统运维(9)网络与安全(9)Python(2)Tornado(2)数据库(1)Rust(1)

语言

全部英语(15)中文(繁体)(10)zh(5)中文(简体)(3)[zh](1)fj(1)日语(1)ro(1)

格式

全部PDF文档 PDF(29)DOC文档 DOC(6)PPT文档 PPT(1)其他文档 其他(1)
 
本次搜索耗时 0.378 秒,为您找到相关结果约 37 个.
  • 全部
  • 综合其他
  • 人工智能
  • 后端开发
  • Julia
  • 系统运维
  • 网络与安全
  • Python
  • Tornado
  • 数据库
  • Rust
  • 全部
  • 英语
  • 中文(繁体)
  • zh
  • 中文(简体)
  • [zh]
  • fj
  • 日语
  • ro
  • 全部
  • PDF文档 PDF
  • DOC文档 DOC
  • PPT文档 PPT
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Dynamic Model in TVM

    rights reserved. Presenter: Haichen Shen, Yao Wang Amazon SageMaker Neo, Deep Engine Science Dynamic Model in TVM AWS AI© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Models with models© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Support dynamic model in TVM ● Support Any-dim in typing ● Use shape function to compute the type at runtime ● Virtual input_name = "data" input_shape = [tvm.relay.Any(), 3, 224, 224] dtype = "float32" block = get_model('resnet50_v1', pretrained=True) mod, params = relay.frontend.from_mxnet(block, shape={input_name:
    0 码力 | 24 页 | 417.46 KB | 5 月前
    3
  • pdf文档 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502

    国外:GPT-4等效智能在过去18个月内价格下降240倍  国内:大模型「亏本」卖,可以「白嫖」大模型API能力 19政企、创业者必读 DeepSeek出现之前的十大预判 之七 多模态越来越重要  由文本生成迈向图像、视频、3D内容与世界模拟  多模态模态在能力变强的同时,规模正在变小 20政企、创业者必读 21 DeepSeek出现之前的十大预判 之八 智能体推动大模型快速落地  能够调用各种工具,具有行动能力 过去如何做蛋白质研究 AlphaFold 1. X射线晶体衍射 2. 核磁共振 3. 冷冻电子显微镜 1. 利用Transformer的预测能力, 2. 直接从蛋白质的氨基酸序列 3. 中预测蛋白质的3D结构 靠肉眼观察,几年才能发现一个复杂蛋 白质结构,半个世纪预测了20多万种 从数年缩短到几分钟,解开了生物学密码 成功预测了地球存在的2亿种蛋白质结构 45政企、创业者必读  DeepS
    0 码力 | 76 页 | 5.02 MB | 5 月前
    3
  • pdf文档 Julia 1.11.4

    combinations of argument types, and applied by dis- patching to the most specific matching definition. This model is a good fit for mathematical programming, where it is unnatural for the first argument to "own" @atomicreplace macros, and @atomiconce macros.CHAPTER 25. MULTI-THREADING 326 Specific details of the memory model and other details of the design are written in the Julia Atomics Mani- festo, which will later be it possible to run up to N Tasks on M Process, aka M:N Threading. Then a lock acquiring\releasing model for nextidx will be needed, as it is not safe to let multiple processes read-write a resource at
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 Julia 1.11.5 Documentation

    combinations of argument types, and applied by dis- patching to the most specific matching definition. This model is a good fit for mathematical programming, where it is unnatural for the first argument to "own" @atomicreplace macros, and @atomiconce macros.CHAPTER 25. MULTI-THREADING 326 Specific details of the memory model and other details of the design are written in the Julia Atomics Mani- festo, which will later be it possible to run up to N Tasks on M Process, aka M:N Threading. Then a lock acquiring\releasing model for nextidx will be needed, as it is not safe to let multiple processes read-write a resource at
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 Julia 1.11.6 Release Notes

    combinations of argument types, and applied by dis- patching to the most specific matching definition. This model is a good fit for mathematical programming, where it is unnatural for the first argument to "own" @atomicreplace macros, and @atomiconce macros.CHAPTER 25. MULTI-THREADING 326 Specific details of the memory model and other details of the design are written in the Julia Atomics Mani- festo, which will later be it possible to run up to N Tasks on M Process, aka M:N Threading. Then a lock acquiring\releasing model for nextidx will be needed, as it is not safe to let multiple processes read-write a resource at
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 julia 1.13.0 DEV

    combinations of argument types, and applied by dis- patching to the most specific matching definition. This model is a good fit for mathematical programming, where it is unnatural for the first argument to "own" @atomic, @atomicswap, @atomicreplace macros, and @atomiconce macros. Specific details of the memory model and other details of the design are written in the Julia Atomics Mani- festo, which will later be it possible to run up to N Tasks on M Process, aka M:N Threading. Then a lock acquiring\releasing model for nextidx will be needed, as it is not safe to let multiple processes read-write a resource at the
    0 码力 | 2058 页 | 7.45 MB | 3 月前
    3
  • pdf文档 Julia 1.12.0 RC1

    combinations of argument types, and applied by dis- patching to the most specific matching definition. This model is a good fit for mathematical programming, where it is unnatural for the first argument to "own" @atomic, @atomicswap, @atomicreplace macros, and @atomiconce macros. Specific details of the memory model and other details of the design are written in the Julia Atomics Mani- festo, which will later be it possible to run up to N Tasks on M Process, aka M:N Threading. Then a lock acquiring\releasing model for nextidx will be needed, as it is not safe to let multiple processes read-write a resource at the
    0 码力 | 2057 页 | 7.44 MB | 3 月前
    3
  • pdf文档 Julia 1.12.0 Beta4

    combinations of argument types, and applied by dis- patching to the most specific matching definition. This model is a good fit for mathematical programming, where it is unnatural for the first argument to "own" @atomic, @atomicswap, @atomicreplace macros, and @atomiconce macros. Specific details of the memory model and other details of the design are written in the Julia Atomics Mani- festo, which will later be it possible to run up to N Tasks on M Process, aka M:N Threading. Then a lock acquiring\releasing model for nextidx will be needed, as it is not safe to let multiple processes read-write a resource at the
    0 码力 | 2057 页 | 7.44 MB | 3 月前
    3
  • pdf文档 Julia 1.12.0 Beta3

    combinations of argument types, and applied by dis- patching to the most specific matching definition. This model is a good fit for mathematical programming, where it is unnatural for the first argument to "own" @atomic, @atomicswap, @atomicreplace macros, and @atomiconce macros. Specific details of the memory model and other details of the design are written in the Julia Atomics Mani- festo, which will later be it possible to run up to N Tasks on M Process, aka M:N Threading. Then a lock acquiring\releasing model for nextidx will be needed, as it is not safe to let multiple processes read-write a resource at the
    0 码力 | 2057 页 | 7.44 MB | 3 月前
    3
  • pdf文档 julia 1.12.0 beta1

    combinations of argument types, and applied by dis- patching to the most specific matching definition. This model is a good fit for mathematical programming, where it is unnatural for the first argument to "own" @atomic, @atomicswap, @atomicreplace macros, and @atomiconce macros. Specific details of the memory model and other details of the design are written in the Julia Atomics Mani- festo, which will later be it possible to run up to N Tasks on M Process, aka M:N Threading. Then a lock acquiring\releasing model for nextidx will be needed, as it is not safe to let multiple processes read-write a resource at the
    0 码力 | 2047 页 | 7.41 MB | 3 月前
    3
共 37 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
DynamicModelinTVM周鸿祎清华演讲DeepSeek我们带来创业机会360202502Julia1.11DocumentationReleaseNotesjulia1.13DEV1.12RC1Beta4Beta3beta1
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩