【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502国外:GPT-4等效智能在过去18个月内价格下降240倍 国内:大模型「亏本」卖,可以「白嫖」大模型API能力 19政企、创业者必读 DeepSeek出现之前的十大预判 之七 多模态越来越重要 由文本生成迈向图像、视频、3D内容与世界模拟 多模态模态在能力变强的同时,规模正在变小 20政企、创业者必读 21 DeepSeek出现之前的十大预判 之八 智能体推动大模型快速落地 能够调用各种工具,具有行动能力 过去如何做蛋白质研究 AlphaFold 1. X射线晶体衍射 2. 核磁共振 3. 冷冻电子显微镜 1. 利用Transformer的预测能力, 2. 直接从蛋白质的氨基酸序列 3. 中预测蛋白质的3D结构 靠肉眼观察,几年才能发现一个复杂蛋 白质结构,半个世纪预测了20多万种 从数年缩短到几分钟,解开了生物学密码 成功预测了地球存在的2亿种蛋白质结构 45政企、创业者必读 DeepS0 码力 | 76 页 | 5.02 MB | 5 月前3
Rust 程序设计语言 简体中文版 1.85.0接下来,我们会讨论随着 Rust 程序增大时如何以惯用的方式对问题进行建模和对解决方案进 行结构化。此外我们还会讨论 Rust 的惯用写法如何与你可能已经熟悉的面向对象编程惯例相 对应。 424/562Rust 程序设计语言 简体中文版 面向对象编程特性 面向对象编程(Object-Oriented Programming,OOP)是一种对程序进行建模的方式。对 象(Object)作为一个编程概念来源于 20 允许我们在只有一个匹配分支的match 中使用不可反驳模式,不过这么 做不是特别有用,并可以被更简单的 let 语句替代。 目前我们已经讨论了所有可以使用模式的地方,以及可反驳模式与不可反驳模式的区别,下面 让我们一起去把可以用来创建模式的语法过目一遍吧。 452/562Rust 程序设计语言 简体中文版 模式语法 在本节中,我们收集了模式中所有有效的语法,并讨论为什么以及何时你可能要使用这些语 法。 匹配字面值 如第六0 码力 | 562 页 | 3.23 MB | 24 天前3
Julia 1.11.4julia> cat(a, b; dims=(1, 2)) 2×6 Matrix{Int64}: 1 2 3 0 0 0 0 0 0 4 5 6 Extended Help Concatenate 3D arrays: julia> a = ones(2, 2, 3); julia> b = ones(2, 2, 4); julia> c = cat(a, b; dims=3);CHAPTER row (2, 1, 1) _______ _ 3 1 = elements in each column (3, 1) _____________ 4 = elements in each 3d slice (4,) _____________ 4 = elements in each 4d slice (4,) ⇒ shape = ((2, 1, 1), (3, 1), (4,), IndexLinear to the extent that it is possible. Index replacement Consider making 2d slices of a 3d array: julia> A = rand(2,3,4); julia> S1 = view(A, :, 1, 2:3) 2×2 view(::Array{Float64, 3}, :, 10 码力 | 2007 页 | 6.73 MB | 3 月前3
Julia 1.11.5 Documentationjulia> cat(a, b; dims=(1, 2)) 2×6 Matrix{Int64}: 1 2 3 0 0 0 0 0 0 4 5 6 Extended Help Concatenate 3D arrays: julia> a = ones(2, 2, 3); julia> b = ones(2, 2, 4); julia> c = cat(a, b; dims=3);CHAPTER row (2, 1, 1) _______ _ 3 1 = elements in each column (3, 1) _____________ 4 = elements in each 3d slice (4,) _____________ 4 = elements in each 4d slice (4,) ⇒ shape = ((2, 1, 1), (3, 1), (4,), IndexLinear to the extent that it is possible. Index replacement Consider making 2d slices of a 3d array: julia> A = rand(2,3,4); julia> S1 = view(A, :, 1, 2:3) 2×2 view(::Array{Float64, 3}, :, 10 码力 | 2007 页 | 6.73 MB | 3 月前3
Julia 1.11.6 Release Notesjulia> cat(a, b; dims=(1, 2)) 2×6 Matrix{Int64}: 1 2 3 0 0 0 0 0 0 4 5 6 Extended Help Concatenate 3D arrays: julia> a = ones(2, 2, 3); julia> b = ones(2, 2, 4); julia> c = cat(a, b; dims=3);CHAPTER row (2, 1, 1) _______ _ 3 1 = elements in each column (3, 1) _____________ 4 = elements in each 3d slice (4,) _____________ 4 = elements in each 4d slice (4,) ⇒ shape = ((2, 1, 1), (3, 1), (4,), IndexLinear to the extent that it is possible. Index replacement Consider making 2d slices of a 3d array: julia> A = rand(2,3,4); julia> S1 = view(A, :, 1, 2:3) 2×2 view(::Array{Float64, 3}, :, 10 码力 | 2007 页 | 6.73 MB | 3 月前3
julia 1.13.0 DEVjulia> cat(a, b; dims=(1, 2)) 2×6 Matrix{Int64}: 1 2 3 0 0 0 0 0 0 4 5 6 Extended Help Concatenate 3D arrays: julia> a = ones(2, 2, 3); julia> b = ones(2, 2, 4); julia> c = cat(a, b; dims=3); julia> row (2, 1, 1) _______ _ 3 1 = elements in each column (3, 1) _____________ 4 = elements in each 3d slice (4,) _____________ 4 = elements in each 4d slice (4,) ⇒ shape = ((2, 1, 1), (3, 1), (4,), IndexLinear to the extent that it is possible. Index replacement Consider making 2d slices of a 3d array: julia> A = rand(2,3,4); julia> S1 = view(A, :, 1, 2:3) 2×2 view(::Array{Float64, 3}, :, 10 码力 | 2058 页 | 7.45 MB | 3 月前3
Julia 1.12.0 RC1julia> cat(a, b; dims=(1, 2)) 2×6 Matrix{Int64}: 1 2 3 0 0 0 0 0 0 4 5 6 Extended Help Concatenate 3D arrays: julia> a = ones(2, 2, 3); julia> b = ones(2, 2, 4); julia> c = cat(a, b; dims=3); julia> row (2, 1, 1) _______ _ 3 1 = elements in each column (3, 1) _____________ 4 = elements in each 3d slice (4,) _____________CHAPTER 48. ARRAYS 1088 4 = elements in each 4d slice (4,) ⇒ shape = ((2 IndexLinear to the extent that it is possible. Index replacement Consider making 2d slices of a 3d array: julia> A = rand(2,3,4); julia> S1 = view(A, :, 1, 2:3) 2×2 view(::Array{Float64, 3}, :, 10 码力 | 2057 页 | 7.44 MB | 3 月前3
Julia 1.12.0 Beta4julia> cat(a, b; dims=(1, 2)) 2×6 Matrix{Int64}: 1 2 3 0 0 0 0 0 0 4 5 6 Extended Help Concatenate 3D arrays: julia> a = ones(2, 2, 3); julia> b = ones(2, 2, 4); julia> c = cat(a, b; dims=3); julia> row (2, 1, 1) _______ _ 3 1 = elements in each column (3, 1) _____________ 4 = elements in each 3d slice (4,) _____________CHAPTER 48. ARRAYS 1087 4 = elements in each 4d slice (4,) ⇒ shape = ((2 IndexLinear to the extent that it is possible. Index replacement Consider making 2d slices of a 3d array: julia> A = rand(2,3,4); julia> S1 = view(A, :, 1, 2:3) 2×2 view(::Array{Float64, 3}, :, 10 码力 | 2057 页 | 7.44 MB | 3 月前3
Julia 1.12.0 Beta3julia> cat(a, b; dims=(1, 2)) 2×6 Matrix{Int64}: 1 2 3 0 0 0 0 0 0 4 5 6 Extended Help Concatenate 3D arrays: julia> a = ones(2, 2, 3); julia> b = ones(2, 2, 4); julia> c = cat(a, b; dims=3); julia> row (2, 1, 1) _______ _ 3 1 = elements in each column (3, 1) _____________ 4 = elements in each 3d slice (4,) _____________CHAPTER 48. ARRAYS 1087 4 = elements in each 4d slice (4,) ⇒ shape = ((2 IndexLinear to the extent that it is possible. Index replacement Consider making 2d slices of a 3d array: julia> A = rand(2,3,4); julia> S1 = view(A, :, 1, 2:3) 2×2 view(::Array{Float64, 3}, :, 10 码力 | 2057 页 | 7.44 MB | 3 月前3
julia 1.12.0 beta1julia> cat(a, b; dims=(1, 2)) 2×6 Matrix{Int64}: 1 2 3 0 0 0 0 0 0 4 5 6 Extended Help Concatenate 3D arrays: julia> a = ones(2, 2, 3); julia> b = ones(2, 2, 4); julia> c = cat(a, b; dims=3); julia> row (2, 1, 1) _______ _ 3 1 = elements in each column (3, 1) _____________ 4 = elements in each 3d slice (4,) _____________CHAPTER 47. ARRAYS 1079 4 = elements in each 4d slice (4,) ⇒ shape = ((2 IndexLinear to the extent that it is possible. Index replacement Consider making 2d slices of a 3d array: julia> A = rand(2,3,4); julia> S1 = view(A, :, 1, 2:3) 2×2 view(::Array{Float64, 3}, :, 10 码力 | 2047 页 | 7.41 MB | 3 月前3
共 12 条
- 1
- 2













