积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(11)Julia(10)综合其他(2)人工智能(2)Rust(1)

语言

全部中文(繁体)(10)中文(简体)(3)

格式

全部PDF文档 PDF(13)
 
本次搜索耗时 0.375 秒,为您找到相关结果约 13 个.
  • 全部
  • 后端开发
  • Julia
  • 综合其他
  • 人工智能
  • Rust
  • 全部
  • 中文(繁体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Rust 程序设计语言 简体中文版 1.85.0

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 14. 更多关于 Cargo 和 Crates.io 的内容 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 把在一个领域中学习的技能延伸到另一个领域:你可以通过编写网页应用来学习 Rust,接着 将同样的技能应用到你的 Raspberry Pi(树莓派)上。 本书全面介绍了 Rust 为用户赋予的能力。其内容平易近人,致力于帮助你提升 Rust 的知识, 并且提升你作为程序员整体的理解与自信。欢迎你加入 Rust 社区,让我们准备深入学习 Rust 吧! —— Nicholas Matsakis 和 Aaron 生态系统中丰富的工具,开发者在编写系统级代码时可以更加高效。 学生 Rust 适合学生群体,也适合有兴趣学习系统概念的人。许多人通过 Rust 学习了操作系统开发 等主题。社区对学生问题非常欢迎并乐于回答。通过类似这本书以及其他内容的努力,Rust 团队希望使系统概念能为更多人所易于理解,特别是编程新手。 公司 数百家大小规模的公司在生产环境中使用 Rust 完成各种任务,包括命令行工具、Web 服务、 DevOps 工具
    0 码力 | 562 页 | 3.23 MB | 25 天前
    3
  • pdf文档 人工智能安全治理框架 1.0

    有异常难以快速修正和溯源追责。 (b)偏见、歧视风险。算法设计及训练过程中,个人偏见被有意、无意引入, 或者因训练数据集质量问题,导致算法设计目的、输出结果存在偏见或歧视, 甚至输出存在民族、宗教、国别、地域等歧视性内容。 (c)鲁棒性弱风险。由于深度神经网络存在非线性、大规模等特点,人 工智能易受复杂多变运行环境或恶意干扰、诱导的影响,可能带来性能下降、 决策错误等诸多问题。- 4 - 人工智能安全治理框架 实则不符常理的内容,造成知识偏见与误导。 (f)对抗攻击风险。攻击者通过创建精心设计的对抗样本数据,隐蔽地 误导、影响,以至操纵人工智能模型,使其产生错误的输出,甚至造成运行瘫痪。 3.1.2 数据安全风险 (a)违规收集使用数据风险。人工智能训练数据的获取,以及提供服务 与用户交互过程中,存在未经同意收集、不当使用数据和个人信息的安全风险。 (b)训练数据含不当内容、被 “投毒” 风险。训练数据中含有虚假、偏见、 风险。训练数据中含有虚假、偏见、 侵犯知识产权等违法有害信息,或者来源缺乏多样性,导致输出违法的、不良 的、偏激的等有害信息内容。训练数据还面临攻击者篡改、注入错误、误导数 据的“投毒”风险,“污染”模型的概率分布,进而造成准确性、可信度下降。 (c)训练数据标注不规范风险。训练数据标注过程中,存在因标注规则 不完备、标注人员能力不够、标注错误等问题,不仅会影响模型算法准确度、 可靠性
    0 码力 | 20 页 | 3.79 MB | 1 月前
    3
  • pdf文档 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502

    价格下降240倍  国内:大模型「亏本」卖,可以「白嫖」大模型API能力 19政企、创业者必读 DeepSeek出现之前的十大预判 之七 多模态越来越重要  由文本生成迈向图像、视频、3D内容与世界模拟  多模态模态在能力变强的同时,规模正在变小 20政企、创业者必读 21 DeepSeek出现之前的十大预判 之八 智能体推动大模型快速落地  能够调用各种工具,具有行动能力 过去如何做蛋白质研究 AlphaFold 1. X射线晶体衍射 2. 核磁共振 3. 冷冻电子显微镜 1. 利用Transformer的预测能力, 2. 直接从蛋白质的氨基酸序列 3. 中预测蛋白质的3D结构 靠肉眼观察,几年才能发现一个复杂蛋 白质结构,半个世纪预测了20多万种 从数年缩短到几分钟,解开了生物学密码 成功预测了地球存在的2亿种蛋白质结构 45政企、创业者必读  DeepS
    0 码力 | 76 页 | 5.02 MB | 5 月前
    3
  • pdf文档 Julia 1.11.4

    julia> cat(a, b; dims=(1, 2)) 2×6 Matrix{Int64}: 1 2 3 0 0 0 0 0 0 4 5 6 Extended Help Concatenate 3D arrays: julia> a = ones(2, 2, 3); julia> b = ones(2, 2, 4); julia> c = cat(a, b; dims=3);CHAPTER row (2, 1, 1) _______ _ 3 1 = elements in each column (3, 1) _____________ 4 = elements in each 3d slice (4,) _____________ 4 = elements in each 4d slice (4,) ⇒ shape = ((2, 1, 1), (3, 1), (4,), IndexLinear to the extent that it is possible. Index replacement Consider making 2d slices of a 3d array: julia> A = rand(2,3,4); julia> S1 = view(A, :, 1, 2:3) 2×2 view(::Array{Float64, 3}, :, 1
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 Julia 1.11.5 Documentation

    julia> cat(a, b; dims=(1, 2)) 2×6 Matrix{Int64}: 1 2 3 0 0 0 0 0 0 4 5 6 Extended Help Concatenate 3D arrays: julia> a = ones(2, 2, 3); julia> b = ones(2, 2, 4); julia> c = cat(a, b; dims=3);CHAPTER row (2, 1, 1) _______ _ 3 1 = elements in each column (3, 1) _____________ 4 = elements in each 3d slice (4,) _____________ 4 = elements in each 4d slice (4,) ⇒ shape = ((2, 1, 1), (3, 1), (4,), IndexLinear to the extent that it is possible. Index replacement Consider making 2d slices of a 3d array: julia> A = rand(2,3,4); julia> S1 = view(A, :, 1, 2:3) 2×2 view(::Array{Float64, 3}, :, 1
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 Julia 1.11.6 Release Notes

    julia> cat(a, b; dims=(1, 2)) 2×6 Matrix{Int64}: 1 2 3 0 0 0 0 0 0 4 5 6 Extended Help Concatenate 3D arrays: julia> a = ones(2, 2, 3); julia> b = ones(2, 2, 4); julia> c = cat(a, b; dims=3);CHAPTER row (2, 1, 1) _______ _ 3 1 = elements in each column (3, 1) _____________ 4 = elements in each 3d slice (4,) _____________ 4 = elements in each 4d slice (4,) ⇒ shape = ((2, 1, 1), (3, 1), (4,), IndexLinear to the extent that it is possible. Index replacement Consider making 2d slices of a 3d array: julia> A = rand(2,3,4); julia> S1 = view(A, :, 1, 2:3) 2×2 view(::Array{Float64, 3}, :, 1
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 julia 1.13.0 DEV

    julia> cat(a, b; dims=(1, 2)) 2×6 Matrix{Int64}: 1 2 3 0 0 0 0 0 0 4 5 6 Extended Help Concatenate 3D arrays: julia> a = ones(2, 2, 3); julia> b = ones(2, 2, 4); julia> c = cat(a, b; dims=3); julia> row (2, 1, 1) _______ _ 3 1 = elements in each column (3, 1) _____________ 4 = elements in each 3d slice (4,) _____________ 4 = elements in each 4d slice (4,) ⇒ shape = ((2, 1, 1), (3, 1), (4,), IndexLinear to the extent that it is possible. Index replacement Consider making 2d slices of a 3d array: julia> A = rand(2,3,4); julia> S1 = view(A, :, 1, 2:3) 2×2 view(::Array{Float64, 3}, :, 1
    0 码力 | 2058 页 | 7.45 MB | 3 月前
    3
  • pdf文档 Julia 1.12.0 RC1

    julia> cat(a, b; dims=(1, 2)) 2×6 Matrix{Int64}: 1 2 3 0 0 0 0 0 0 4 5 6 Extended Help Concatenate 3D arrays: julia> a = ones(2, 2, 3); julia> b = ones(2, 2, 4); julia> c = cat(a, b; dims=3); julia> row (2, 1, 1) _______ _ 3 1 = elements in each column (3, 1) _____________ 4 = elements in each 3d slice (4,) _____________CHAPTER 48. ARRAYS 1088 4 = elements in each 4d slice (4,) ⇒ shape = ((2 IndexLinear to the extent that it is possible. Index replacement Consider making 2d slices of a 3d array: julia> A = rand(2,3,4); julia> S1 = view(A, :, 1, 2:3) 2×2 view(::Array{Float64, 3}, :, 1
    0 码力 | 2057 页 | 7.44 MB | 3 月前
    3
  • pdf文档 Julia 1.12.0 Beta4

    julia> cat(a, b; dims=(1, 2)) 2×6 Matrix{Int64}: 1 2 3 0 0 0 0 0 0 4 5 6 Extended Help Concatenate 3D arrays: julia> a = ones(2, 2, 3); julia> b = ones(2, 2, 4); julia> c = cat(a, b; dims=3); julia> row (2, 1, 1) _______ _ 3 1 = elements in each column (3, 1) _____________ 4 = elements in each 3d slice (4,) _____________CHAPTER 48. ARRAYS 1087 4 = elements in each 4d slice (4,) ⇒ shape = ((2 IndexLinear to the extent that it is possible. Index replacement Consider making 2d slices of a 3d array: julia> A = rand(2,3,4); julia> S1 = view(A, :, 1, 2:3) 2×2 view(::Array{Float64, 3}, :, 1
    0 码力 | 2057 页 | 7.44 MB | 3 月前
    3
  • pdf文档 Julia 1.12.0 Beta3

    julia> cat(a, b; dims=(1, 2)) 2×6 Matrix{Int64}: 1 2 3 0 0 0 0 0 0 4 5 6 Extended Help Concatenate 3D arrays: julia> a = ones(2, 2, 3); julia> b = ones(2, 2, 4); julia> c = cat(a, b; dims=3); julia> row (2, 1, 1) _______ _ 3 1 = elements in each column (3, 1) _____________ 4 = elements in each 3d slice (4,) _____________CHAPTER 48. ARRAYS 1087 4 = elements in each 4d slice (4,) ⇒ shape = ((2 IndexLinear to the extent that it is possible. Index replacement Consider making 2d slices of a 3d array: julia> A = rand(2,3,4); julia> S1 = view(A, :, 1, 2:3) 2×2 view(::Array{Float64, 3}, :, 1
    0 码力 | 2057 页 | 7.44 MB | 3 月前
    3
共 13 条
  • 1
  • 2
前往
页
相关搜索词
Rust程序设计程序设计语言简体中文文版中文版简体中文版1.85人工智能人工智能安全治理框架1.0周鸿祎清华演讲DeepSeek我们带来创业机会360202502Julia1.11DocumentationReleaseNotesjulia1.13DEV1.12RC1Beta4Beta3
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩