 人工智能安全治理框架 1.0手段,推动各方协同共治。 2.4 安全开发应用指引方面。明确模型算法研发者、服务提供者、重点 领域用户和社会公众用户,开发应用人工智能技术的若干安全指导规范。 3. 人工智能安全风险分类 人工智能系统设计、研发、训练、测试、部署、使用、维护等生命周期 各环节都面临安全风险,既面临自身技术缺陷、不足带来的风险,也面临不当 使用、滥用甚至恶意利用带来的安全风险。 3.1 人工智能内生安全风险 可靠性、有效性,还可能导致训练偏差、偏见歧视放大、泛化能力不足或输出 错误。 (d)数据泄露风险。人工智能研发应用过程中,因数据处理不当、非授 权访问、恶意攻击、诱导交互等问题,可能导致数据和个人信息泄露。 3.1.3 系统安全风险 (a)缺陷、后门被攻击利用风险。人工智能算法模型设计、训练和验证 的标准接口、特性库和工具包,以及开发界面和执行平台可能存在逻辑缺陷、- 5 - 人工智能安全治理框架 漏洞等脆弱点 机制不完善的情况下,有可能输出违法有害内容。 (b)混淆事实、误导用户、绕过鉴权的风险。人工智能系统及输出内容 等未经标识,导致用户难以识别交互对象及生成内容来源是否为人工智能系统, 难以鉴别生成内容的真实性,影响用户判断,导致误解。同时,人工智能生成 图片、音频、视频等高仿真内容,可能绕过现有人脸识别、语音识别等身份认 证机制,导致认证鉴权失效。 (c)不当使用引发信息泄露风险。政府、企业等机构工作人员在业务工0 码力 | 20 页 | 3.79 MB | 1 月前3 人工智能安全治理框架 1.0手段,推动各方协同共治。 2.4 安全开发应用指引方面。明确模型算法研发者、服务提供者、重点 领域用户和社会公众用户,开发应用人工智能技术的若干安全指导规范。 3. 人工智能安全风险分类 人工智能系统设计、研发、训练、测试、部署、使用、维护等生命周期 各环节都面临安全风险,既面临自身技术缺陷、不足带来的风险,也面临不当 使用、滥用甚至恶意利用带来的安全风险。 3.1 人工智能内生安全风险 可靠性、有效性,还可能导致训练偏差、偏见歧视放大、泛化能力不足或输出 错误。 (d)数据泄露风险。人工智能研发应用过程中,因数据处理不当、非授 权访问、恶意攻击、诱导交互等问题,可能导致数据和个人信息泄露。 3.1.3 系统安全风险 (a)缺陷、后门被攻击利用风险。人工智能算法模型设计、训练和验证 的标准接口、特性库和工具包,以及开发界面和执行平台可能存在逻辑缺陷、- 5 - 人工智能安全治理框架 漏洞等脆弱点 机制不完善的情况下,有可能输出违法有害内容。 (b)混淆事实、误导用户、绕过鉴权的风险。人工智能系统及输出内容 等未经标识,导致用户难以识别交互对象及生成内容来源是否为人工智能系统, 难以鉴别生成内容的真实性,影响用户判断,导致误解。同时,人工智能生成 图片、音频、视频等高仿真内容,可能绕过现有人脸识别、语音识别等身份认 证机制,导致认证鉴权失效。 (c)不当使用引发信息泄露风险。政府、企业等机构工作人员在业务工0 码力 | 20 页 | 3.79 MB | 1 月前3
 Rust 程序设计语言 简体中文版 1.85.0Rust 程序设计语言的本质实际在于 赋能(empowerment):无论你现在编写的是何种代码, Rust 能让你在更为广泛的编程领域走得更远,写出自信。(这一点并不显而易见) 举例来说,那些“系统层面”的工作涉及内存管理、数据表示和并发等底层细节。从传统角度来 看,这是一个神秘的编程领域,只为浸润多年的极少数人所触及,也只有他们能避开那些臭名 昭著的陷阱。即使谨慎的实践者,亦唯恐代码出现漏洞、崩溃或损坏。 Rust 来提升信心。例如,在 Rust 中引入并行是相 对低风险的操作,因为编译器会替你找到经典的错误。同时你可以自信地采取更加激进的优 化,而不会意外引入崩溃或漏洞。 但 Rust 并不局限于底层系统编程。它表达力强、写起来舒适,让人能够轻松地编写出命令行 应用、网络服务器等各种类型的代码——在本书中就有这两者的简单示例。使用 Rust 能让你 把在一个领域中学习的技能延伸到另一个领域:你可以通过编写网页应用来学习 已被证明是一个对于具有不同系统编程知识水平的大型开发团队协作而言,非常高效的 工具。底层代码容易出现各种微妙的错误,在大多数其他语言中,这些错误只能通过广泛的测 试和经验丰富的开发者的仔细审核代码来捕捉。在 Rust 中,编译器充当了守门员的角色,拒 绝编译包含这些难以察觉的错误的代码,包括并发错误。通过与编译器合作,团队可以将时间 集中在程序逻辑上,而不是追踪 bug。 Rust 也为系统编程世界带来了现代化的开发工具:0 码力 | 562 页 | 3.23 MB | 25 天前3 Rust 程序设计语言 简体中文版 1.85.0Rust 程序设计语言的本质实际在于 赋能(empowerment):无论你现在编写的是何种代码, Rust 能让你在更为广泛的编程领域走得更远,写出自信。(这一点并不显而易见) 举例来说,那些“系统层面”的工作涉及内存管理、数据表示和并发等底层细节。从传统角度来 看,这是一个神秘的编程领域,只为浸润多年的极少数人所触及,也只有他们能避开那些臭名 昭著的陷阱。即使谨慎的实践者,亦唯恐代码出现漏洞、崩溃或损坏。 Rust 来提升信心。例如,在 Rust 中引入并行是相 对低风险的操作,因为编译器会替你找到经典的错误。同时你可以自信地采取更加激进的优 化,而不会意外引入崩溃或漏洞。 但 Rust 并不局限于底层系统编程。它表达力强、写起来舒适,让人能够轻松地编写出命令行 应用、网络服务器等各种类型的代码——在本书中就有这两者的简单示例。使用 Rust 能让你 把在一个领域中学习的技能延伸到另一个领域:你可以通过编写网页应用来学习 已被证明是一个对于具有不同系统编程知识水平的大型开发团队协作而言,非常高效的 工具。底层代码容易出现各种微妙的错误,在大多数其他语言中,这些错误只能通过广泛的测 试和经验丰富的开发者的仔细审核代码来捕捉。在 Rust 中,编译器充当了守门员的角色,拒 绝编译包含这些难以察觉的错误的代码,包括并发错误。通过与编译器合作,团队可以将时间 集中在程序逻辑上,而不是追踪 bug。 Rust 也为系统编程世界带来了现代化的开发工具:0 码力 | 562 页 | 3.23 MB | 25 天前3
 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502企业政企、创业者必读 人工智能发展历程(一)  从早期基于规则的专家系统,走向基于学习训练的感知型AI  从基于小参数模型的感知型AI,走向基于大参数模型的认知型AI  从擅长理解的认知型AI,发展到擅长文字生成的生成式AI  从语言生成式AI,发展到可理解和生成声音、图片、视频的多模态AI  从生成式AI,发展到推理型AI 专家系统 感知AI 认知AI 生成式AI 多模态AI 推理式AI 四个“十倍”原则  四个方向  四个十倍 选择场景 分解流程  做过去只有人才能做的事  做人做的重复繁琐易出错的事  拆解繁琐复杂的业 务流程 55政企、创业者必读 场景选择示例:人员招聘系统 场景分得足够细,就可以训练对应的专业模型来解决问题 注:经360内部测试,深色的业务环节更加符合“四个十倍”原则 示例:人员招聘就是一个太大的、笼统的场景 需要细分成职位描述、简历筛选、面试评估等粒度更合适的场景 知识管理是大模型更 懂企业的基础 59 解决企业应用,需要打造专业大模型 要解决四个关键基础 以业务大模型为基础, 打造自主工作的数字 员工和AI团队 实现多个Agent、多个 数字化系统、多个组织 之间的协同 知识 管理 融合 工作流 业务大模型 打造 构建 智能体 基于政府企业场景和专业 知识,利用数据工场、知 识工场、模型工场,训练 业务大模型 DeepSeek基座大模型0 码力 | 76 页 | 5.02 MB | 5 月前3 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502企业政企、创业者必读 人工智能发展历程(一)  从早期基于规则的专家系统,走向基于学习训练的感知型AI  从基于小参数模型的感知型AI,走向基于大参数模型的认知型AI  从擅长理解的认知型AI,发展到擅长文字生成的生成式AI  从语言生成式AI,发展到可理解和生成声音、图片、视频的多模态AI  从生成式AI,发展到推理型AI 专家系统 感知AI 认知AI 生成式AI 多模态AI 推理式AI 四个“十倍”原则  四个方向  四个十倍 选择场景 分解流程  做过去只有人才能做的事  做人做的重复繁琐易出错的事  拆解繁琐复杂的业 务流程 55政企、创业者必读 场景选择示例:人员招聘系统 场景分得足够细,就可以训练对应的专业模型来解决问题 注:经360内部测试,深色的业务环节更加符合“四个十倍”原则 示例:人员招聘就是一个太大的、笼统的场景 需要细分成职位描述、简历筛选、面试评估等粒度更合适的场景 知识管理是大模型更 懂企业的基础 59 解决企业应用,需要打造专业大模型 要解决四个关键基础 以业务大模型为基础, 打造自主工作的数字 员工和AI团队 实现多个Agent、多个 数字化系统、多个组织 之间的协同 知识 管理 融合 工作流 业务大模型 打造 构建 智能体 基于政府企业场景和专业 知识,利用数据工场、知 识工场、模型工场,训练 业务大模型 DeepSeek基座大模型0 码力 | 76 页 | 5.02 MB | 5 月前3
共 3 条
- 1













