Rust 程序设计语言 简体中文版 1.85.0将错误信息输出到标准错误而不是标准输出 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 13. 函数式语言特性:迭代器与闭包 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 13.2. 使用迭代器处理元素序列 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 13.4. 性能比较:循环对迭代器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 码力 | 562 页 | 3.23 MB | 26 天前3
人工智能安全治理框架 1.0生命周期 各环节都面临安全风险,既面临自身技术缺陷、不足带来的风险,也面临不当 使用、滥用甚至恶意利用带来的安全风险。 3.1 人工智能内生安全风险 3.1.1 模型算法安全风险 (a)可解释性差的风险。以深度学习为代表的人工智能算法内部运行逻 辑复杂,推理过程属黑灰盒模式,可能导致输出结果难以预测和确切归因,如 有异常难以快速修正和溯源追责。 (b)偏见、歧视风险。算法设计及训练过程中,个人偏见被有意、无意引入, 统使用者等需从 训练数据、算力设施、模型算法、产品服务、应用场景各方面采取技术措施予 以防范。 4.1 针对人工智能内生安全风险 4.1.1 模型算法安全风险应对 (a)不断提高人工智能可解释性、可预测性,为人工智能系统内部构造、- 8 - 人工智能安全治理框架 推理逻辑、技术接口、输出结果提供明确说明,正确反映人工智能系统产生结 果的过程。 (b)在设计、研发、部署、维护过程中建立并实施安全开发规范,尽可 源人工智能技术,共同研发人工智能芯片、框架、软件,引导产业界建立开放 生态,增强供应链来源多样性,保障人工智能供应链安全性稳定性。 5.6 推进人工智能可解释性研究。从机器学习理论、训练方法、人机 交互等方面组织研究人工智能决策透明度、可信度、纠错机制等问题,不断提 高人工智能可解释性和可预测性,避免人工智能系统意外决策产生恶意行为。 5.7 人工智能安全风险威胁信息共享和应急处置机制。持续跟踪分析 人工智能技0 码力 | 20 页 | 3.79 MB | 1 月前3
【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502炉次计划优化算法(智能排产) • 综合物流调度 • 碳资源交易与碳金融 • 中鑫联云商平台风险控制 场景选择示例——钢铁大模型 57政企、创业者必读 有了场景之后,只有DeepSeek还不够 大模型就像培养器中的大脑 会理解、能问答、能生成,但是没有记忆能力,不会使用工具, 不能处理复杂流程,无法下地干活儿 通用大模型不了解企业内部业务情况、行业情况 58政企、创业者必读 知识管理是大模型更 懂企业的基础 将日常重复性业务流程形成Playbook,实现流程自动化 通过目标拆解,多次调用大模型以及专家模型协同,形成慢 思考能力 61政企、创业者必读 智能体的组成部分 大模型 感知 连接企业内部传感器,感知理解知 识数据 流程 完成复杂繁琐的业务流程或重复的 工作流程 角色 定义智能体应扮演的特定的角色或任务 记忆 短期记忆、长期记忆 知识库 连接内部专有知识库,外部互联网 知识库 安全人才规模全球领先 • 漏洞挖掘能力全球领先 四个全球领先 世界的360 • 实战能力第一,实战是检验安全企业能力的唯一标准 • 安全研发投入第一,相当于第2名到第10名的总和 • 服务器和算力投入安全行业第一 • 创新能力第一,专利申请1.5万件,安全行业最多 • 服务和响应能力第一 • 用户数量第一,覆盖225个国家和地区的15亿终端 • 企业客户规模第一的网安公司 • A股网安公司市值第一0 码力 | 76 页 | 5.02 MB | 5 月前3
共 3 条
- 1













