 Rust 程序设计语言 简体中文版 1.85.0将错误信息输出到标准错误而不是标准输出 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 13. 函数式语言特性:迭代器与闭包 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 13.2. 使用迭代器处理元素序列 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 13.4. 性能比较:循环对迭代器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 码力 | 562 页 | 3.23 MB | 25 天前3 Rust 程序设计语言 简体中文版 1.85.0将错误信息输出到标准错误而不是标准输出 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 13. 函数式语言特性:迭代器与闭包 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 13.2. 使用迭代器处理元素序列 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 13.4. 性能比较:循环对迭代器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 码力 | 562 页 | 3.23 MB | 25 天前3
 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502认为大模型的能力无法进一步得到质的提升 开辟强化学习新范式 从预训练Scaling Law转变为强化学习Scaling Law 大数据+大参数+大算力的 预训练Scaling Law的边际效应递减 • 人类构造的训练数据已达上限 • 万亿参数规模之后,继续增大参数规 模难以带来质的提升 • 训练算力成本和工程化难度大幅上升 强化学习Scaling Law • 利用合成数据解决数据用尽问题 • 利 炉次计划优化算法(智能排产) • 综合物流调度 • 碳资源交易与碳金融 • 中鑫联云商平台风险控制 场景选择示例——钢铁大模型 57政企、创业者必读 有了场景之后,只有DeepSeek还不够 大模型就像培养器中的大脑 会理解、能问答、能生成,但是没有记忆能力,不会使用工具, 不能处理复杂流程,无法下地干活儿 通用大模型不了解企业内部业务情况、行业情况 58政企、创业者必读 知识管理是大模型更 懂企业的基础 将日常重复性业务流程形成Playbook,实现流程自动化  通过目标拆解,多次调用大模型以及专家模型协同,形成慢 思考能力 61政企、创业者必读 智能体的组成部分 大模型 感知 连接企业内部传感器,感知理解知 识数据 流程 完成复杂繁琐的业务流程或重复的 工作流程 角色 定义智能体应扮演的特定的角色或任务 记忆 短期记忆、长期记忆 知识库 连接内部专有知识库,外部互联网 知识库0 码力 | 76 页 | 5.02 MB | 5 月前3 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502认为大模型的能力无法进一步得到质的提升 开辟强化学习新范式 从预训练Scaling Law转变为强化学习Scaling Law 大数据+大参数+大算力的 预训练Scaling Law的边际效应递减 • 人类构造的训练数据已达上限 • 万亿参数规模之后,继续增大参数规 模难以带来质的提升 • 训练算力成本和工程化难度大幅上升 强化学习Scaling Law • 利用合成数据解决数据用尽问题 • 利 炉次计划优化算法(智能排产) • 综合物流调度 • 碳资源交易与碳金融 • 中鑫联云商平台风险控制 场景选择示例——钢铁大模型 57政企、创业者必读 有了场景之后,只有DeepSeek还不够 大模型就像培养器中的大脑 会理解、能问答、能生成,但是没有记忆能力,不会使用工具, 不能处理复杂流程,无法下地干活儿 通用大模型不了解企业内部业务情况、行业情况 58政企、创业者必读 知识管理是大模型更 懂企业的基础 将日常重复性业务流程形成Playbook,实现流程自动化  通过目标拆解,多次调用大模型以及专家模型协同,形成慢 思考能力 61政企、创业者必读 智能体的组成部分 大模型 感知 连接企业内部传感器,感知理解知 识数据 流程 完成复杂繁琐的业务流程或重复的 工作流程 角色 定义智能体应扮演的特定的角色或任务 记忆 短期记忆、长期记忆 知识库 连接内部专有知识库,外部互联网 知识库0 码力 | 76 页 | 5.02 MB | 5 月前3
 人工智能安全治理框架 1.0训练数据、算力设施、模型算法、产品服务、应用场景各方面采取技术措施予 以防范。 4.1 针对人工智能内生安全风险 4.1.1 模型算法安全风险应对 (a)不断提高人工智能可解释性、可预测性,为人工智能系统内部构造、- 8 - 人工智能安全治理框架 推理逻辑、技术接口、输出结果提供明确说明,正确反映人工智能系统产生结 果的过程。 (b)在设计、研发、部署、维护过程中建立并实施安全开发规范,尽可 能消0 码力 | 20 页 | 3.79 MB | 1 月前3 人工智能安全治理框架 1.0训练数据、算力设施、模型算法、产品服务、应用场景各方面采取技术措施予 以防范。 4.1 针对人工智能内生安全风险 4.1.1 模型算法安全风险应对 (a)不断提高人工智能可解释性、可预测性,为人工智能系统内部构造、- 8 - 人工智能安全治理框架 推理逻辑、技术接口、输出结果提供明确说明,正确反映人工智能系统产生结 果的过程。 (b)在设计、研发、部署、维护过程中建立并实施安全开发规范,尽可 能消0 码力 | 20 页 | 3.79 MB | 1 月前3
共 3 条
- 1













