Rust 程序设计语言 简体中文版 1.85.0将错误信息输出到标准错误而不是标准输出 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 13. 函数式语言特性:迭代器与闭包 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422 18. 面向对象编程特性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453 20. 高级特性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 码力 | 562 页 | 3.23 MB | 24 天前3
人工智能安全治理框架 1.0能研发应用仍在快速发展, 安全风险的表现形式、影响程度、认识感知亦随之变化,防范应对措施也将相 应动态调整更新,需要各方共同对治理框架持续优化完善。 2.1 安全风险方面。通过分析人工智能技术特性,以及在不同行业领域 应用场景,梳理人工智能技术本身,及其在应用过程中面临的各种安全风险 隐患。 2.2 技术应对措施方面。针对模型算法、训练数据、算力设施、产品服务、 应用场景,提出通过安 因数据处理不当、非授 权访问、恶意攻击、诱导交互等问题,可能导致数据和个人信息泄露。 3.1.3 系统安全风险 (a)缺陷、后门被攻击利用风险。人工智能算法模型设计、训练和验证 的标准接口、特性库和工具包,以及开发界面和执行平台可能存在逻辑缺陷、- 5 - 人工智能安全治理框架 漏洞等脆弱点,还可能被恶意植入后门,存在被触发和攻击利用的风险。 (b)算力安全风险。人工智能训练运行所依赖的算力基础设施,涉及多源、0 码力 | 20 页 | 3.79 MB | 1 月前3
【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502不拥抱AI的组织和个人,会被拥抱AI的组织和个人淘汰。你相不相信? 建立AI信仰 6政企、创业者必读 大模型不是泡沫,而是新一轮工业革命的驱动引擎 蒸汽革命 电气革命 信息革命 以大模型为代表的 人工智能革命 人工智能是新质生产力的关键支撑技术,人工智能+百业千行将带动新一轮工业革命,为高质量发展注入强大动能 大模型的进一步突破将引领人类社会进入智能化时代,对我们的生活方式、生产方式带来巨大变革 重塑经济图景 解决复杂问题 人类训练数据接近枯竭 合成数据无法创造新知识 推理能力难以泛化,成本高昂 全面超越人类的人工智能在逻辑上不成立政企、创业者必读 15 DeepSeek出现之前的十大预判 之二 慢思考成为新的发展模式 大模型发展范式正在从「预训练」转向「后训练」和「推理时计算」 大模型厂商都在探索慢思考、思维链技术政企、创业者必读 DeepSeek出现之前的十大预判 之三 模型越做越专 自主工作的数字员工,是新的生产力政企、创业者必读 22 DeepSeek出现之前的十大预判 之九 开源效果追赶上闭源 技术开放,吸引广大开发人员和用户使用 很多公司参与开源,帮助改进产品,众人拾柴火焰高, 反哺开源产品,形成正循环政企、创业者必读 DeepSeek出现之前的十大预判 之十 中美差距快速缩小 美国预训练堆算力的路线不可持续,有待发现新范式“换道超车” 0 码力 | 76 页 | 5.02 MB | 5 月前3
共 3 条
- 1













