积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(2)人工智能(2)后端开发(1)Rust(1)

语言

全部中文(简体)(3)

格式

全部PDF文档 PDF(3)
 
本次搜索耗时 0.033 秒,为您找到相关结果约 3 个.
  • 全部
  • 综合其他
  • 人工智能
  • 后端开发
  • Rust
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502

    应对 • 应对模型安全新挑战,打 赢未雨绸缪之战 • 大模型是能力而非产品, 结合场景才能发挥价值 • 中国拥有最完整的产业链、 最全的工业门类、最丰富 的场景 • 发挥场景优势,加速传统 产业数转智改,打赢弯道 超车之战 AGI是全球少数玩家的游戏,政府、企业、创业者更多创新的机会在应用之路 11政企、创业者必读 把大模型拉下神坛! 走入千家万户、百行千业,才能掀起新工业革命 • 当年IBM做出超级电脑,并没有带来工业 万亿参数规模之后,继续增大参数规 模难以带来质的提升 • 训练算力成本和工程化难度大幅上升 强化学习Scaling Law • 利用合成数据解决数据用尽问题 • 利用self-play强化学习,在不增大参 数规模前提下,大幅提升复杂推理能力 • 通过后训练算力和推理算力,在不增加 预训练算力前提下,大幅提升模型性能 DeepSeek颠覆式创新——技术创新 26政企、创业者必读  预训练模型如GPT——疯狂读书,积 创业公司得到DeepSeek加持,创业者拥有便宜领先的大模型,迎来 机遇,带来“iPhone时刻” 中国变成AI渗透率最高的国家,率先实现AI工业革命 37政企、创业者必读 人人智能 万物智能 数转智改 未来产业 科学研究 安全 应用爆发的六大方向 38政企、创业者必读 DeepSeek的开源和低成本使得个人也能够拥有自有大模型,实现超能力, 成长为超级个体 DeepSeek六大应用方向之一
    0 码力 | 76 页 | 5.02 MB | 5 月前
    3
  • pdf文档 Rust 程序设计语言 简体中文版 1.85.0

    • 直接通过 rustc 编写并运行 Hello, world! 程序 • 使用 Cargo 创建并运行新项目 是时候通过构建更实质性的程序来熟悉读写 Rust 代码了。所以在第二章我们会构建一个猜数 字游戏程序。如果你更愿意从学习 Rust 常用的编程概念开始,请阅读第三章,接着再回到第 二章。 21/562Rust 程序设计语言 简体中文版 编写一个猜数字游戏 让我们一起动手完成一个项目来快速上手 生成一个秘密数字 接下来,需要生成一个秘密数字,好让用户来猜。秘密数字应该每次都不同,这样重复玩才不 会乏味;范围应该在 1 到 100 之间,这样才不会太困难。Rust 标准库中尚未包含随机数功能。 然而,Rust 团队还是提供了一个包含上述功能的 rand crate。 26/562Rust 程序设计语言 简体中文版 使用 crate 来增加更多功能 记住,crate 是一组 Rust 第十四章会讲到 Cargo 及其生态系统 的更多内容,不过目前你只需要了解这么多。通过 Cargo 复用库文件非常容易,因此 Rustacean 能够编写出由很多包组装而成的更轻巧的项目。 生成一个随机数 让我们开始使用 rand 来生成一个要猜测的数字。下一步是更新 src/main.rs,如示例 2-3 所 示。 文件名:src/main.rs use std::io; use rand::Rng;
    0 码力 | 562 页 | 3.23 MB | 24 天前
    3
  • pdf文档 人工智能安全治理框架 1.0

    (c)加强对人工智能生成合成内容的检测技术研发,提升对认知战手段- 10 - 人工智能安全治理框架 的防范、检测、处置能力。 4.2.4 伦理域风险应对 (a)在算法设计、模型训练和优化、提供服务等过程中,应采取训练数 据筛选、输出校验等方式,防止产生民族、信仰、国别、地域、性别、年龄、 职业、健康等方面歧视。 (b)应用于政府部门、关键信息基础设施以及直接影响公共安全和公民 生命健康安全的领域等重点领域的人工智能系统,应具备高效精准的应急管控 被窃取、篡改的风险 4.1.1 (b) 输出不可靠风险 4.1.1 (a)(b) 对抗攻击风险 4.1.1 (b) 数据安 全风险 违规收集使用数据风险 4.1.2 (a) 完善人工智能数 据安全和个人信 息保护规范 训练数据含不当内容、被 “投毒” 风险 4.1.2 (b)(c)(d)(e) (f) 训练数据标注不规范风险 4.1.2 (e) 数据泄露风险 4.1.2 (c)(d)
    0 码力 | 20 页 | 3.79 MB | 1 月前
    3
共 3 条
  • 1
前往
页
相关搜索词
周鸿祎清华演讲DeepSeek我们带来创业机会360202502Rust程序设计程序设计语言简体中文文版中文版简体中文版1.85人工智能人工智能安全治理框架1.0
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩