 Rust 程序设计语言 简体中文版 1.85.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552 22.4. D - 实用开发工具 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 或损坏。 Rust 破除了这些障碍:它消除了旧的陷阱,并提供了伴你一路同行的友好、精良的工具。想 要 “深入” 底层控制的程序员可以使用 Rust,无需时刻担心出现崩溃或安全漏洞,也无需因为 工具链不靠谱而被迫去了解其中的细节。更妙的是,语言设计本身会自然而然地引导你编写出 可靠的代码,并且运行速度和内存使用上都十分高效。 已经在从事编写底层代码的程序员可以使用 Rust 来提升信心。例如,在 中,编译器充当了守门员的角色,拒 绝编译包含这些难以察觉的错误的代码,包括并发错误。通过与编译器合作,团队可以将时间 集中在程序逻辑上,而不是追踪 bug。 Rust 也为系统编程世界带来了现代化的开发工具: • Cargo 是内置的依赖管理器和构建工具,它能轻松增加、编译和管理依赖,并使依赖在 Rust 生态系统中保持一致。 • Rustfmt 格式化工具确保开发者遵循一致的代码风格。 • rust-analyzer0 码力 | 562 页 | 3.23 MB | 26 天前3 Rust 程序设计语言 简体中文版 1.85.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552 22.4. D - 实用开发工具 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 或损坏。 Rust 破除了这些障碍:它消除了旧的陷阱,并提供了伴你一路同行的友好、精良的工具。想 要 “深入” 底层控制的程序员可以使用 Rust,无需时刻担心出现崩溃或安全漏洞,也无需因为 工具链不靠谱而被迫去了解其中的细节。更妙的是,语言设计本身会自然而然地引导你编写出 可靠的代码,并且运行速度和内存使用上都十分高效。 已经在从事编写底层代码的程序员可以使用 Rust 来提升信心。例如,在 中,编译器充当了守门员的角色,拒 绝编译包含这些难以察觉的错误的代码,包括并发错误。通过与编译器合作,团队可以将时间 集中在程序逻辑上,而不是追踪 bug。 Rust 也为系统编程世界带来了现代化的开发工具: • Cargo 是内置的依赖管理器和构建工具,它能轻松增加、编译和管理依赖,并使依赖在 Rust 生态系统中保持一致。 • Rustfmt 格式化工具确保开发者遵循一致的代码风格。 • rust-analyzer0 码力 | 562 页 | 3.23 MB | 26 天前3
 人工智能安全治理框架 1.0制和方式,对确需政府监管事项及时予以响应。 1.3 技管结合、协同应对。面向人工智能研发应用全过程,综合运用技术、 管理相结合的安全治理措施,防范应对不同类型安全风险。围绕人工智能研发 应用生态链,明确模型算法研发者、服务提供者、使用者等相关主体的安全责 任,有机发挥政府监管、行业自律、社会监督等治理机制作用。 1.4 开放合作、共治共享。在全球范围推动人工智能安全治理国际合作, 共享最 基础设施,涉及多源、 泛在算力节点,不同类型计算资源,面临算力资源恶意消耗、算力层面风险跨 边界传递等风险。 (c)供应链安全风险。人工智能产业链呈现高度全球化分工协作格局。 但个别国家利用技术垄断和出口管制等单边强制措施制造发展壁垒,恶意阻断 全球人工智能供应链,带来突出的芯片、软件、工具断供风险。 3.2 人工智能应用安全风险 3.2.1 网络域安全风险 (a)信息内容安全风险 人工智能安全治理框架 (c)加强人工智能算力平台和系统服务的安全建设、管理、运维能力, 确保基础设施和服务运行不中断。 (d)对于人工智能系统采用的芯片、软件、工具、算力和数据资源,应 高度关注供应链安全。跟踪软硬件产品的漏洞、缺陷信息并及时采取修补加固 措施,保证系统安全性。 4.2 针对人工智能应用安全风险 4.2.1 网络域风险应对 (a)建立安全防护机制,防止模型运行过程中被干扰、篡改而输出不可0 码力 | 20 页 | 3.79 MB | 1 月前3 人工智能安全治理框架 1.0制和方式,对确需政府监管事项及时予以响应。 1.3 技管结合、协同应对。面向人工智能研发应用全过程,综合运用技术、 管理相结合的安全治理措施,防范应对不同类型安全风险。围绕人工智能研发 应用生态链,明确模型算法研发者、服务提供者、使用者等相关主体的安全责 任,有机发挥政府监管、行业自律、社会监督等治理机制作用。 1.4 开放合作、共治共享。在全球范围推动人工智能安全治理国际合作, 共享最 基础设施,涉及多源、 泛在算力节点,不同类型计算资源,面临算力资源恶意消耗、算力层面风险跨 边界传递等风险。 (c)供应链安全风险。人工智能产业链呈现高度全球化分工协作格局。 但个别国家利用技术垄断和出口管制等单边强制措施制造发展壁垒,恶意阻断 全球人工智能供应链,带来突出的芯片、软件、工具断供风险。 3.2 人工智能应用安全风险 3.2.1 网络域安全风险 (a)信息内容安全风险 人工智能安全治理框架 (c)加强人工智能算力平台和系统服务的安全建设、管理、运维能力, 确保基础设施和服务运行不中断。 (d)对于人工智能系统采用的芯片、软件、工具、算力和数据资源,应 高度关注供应链安全。跟踪软硬件产品的漏洞、缺陷信息并及时采取修补加固 措施,保证系统安全性。 4.2 针对人工智能应用安全风险 4.2.1 网络域风险应对 (a)建立安全防护机制,防止模型运行过程中被干扰、篡改而输出不可0 码力 | 20 页 | 3.79 MB | 1 月前3
 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502追赶之战 • 大模型带来前所未有安全 挑战 • 外挂式传统安全手段难以 应对 • 应对模型安全新挑战,打 赢未雨绸缪之战 • 大模型是能力而非产品, 结合场景才能发挥价值 • 中国拥有最完整的产业链、 最全的工业门类、最丰富 的场景 • 发挥场景优势,加速传统 产业数转智改,打赢弯道 超车之战 AGI是全球少数玩家的游戏,政府、企业、创业者更多创新的机会在应用之路 11政企、创业者必读 把大模型拉下神坛! 全面超越人类的人工智能在逻辑上不成立政企、创业者必读 15 DeepSeek出现之前的十大预判 之二 慢思考成为新的发展模式  大模型发展范式正在从「预训练」转向「后训练」和「推理时计算」  大模型厂商都在探索慢思考、思维链技术政企、创业者必读 DeepSeek出现之前的十大预判 之三 模型越做越专  除了少数科技巨头,大多数公司都专注于做专业大模型  MoE架构盛行,本质是多个专家模型组成一个大模型  De 人类真正智力表现 的形式 直觉经验型 速度快、准确性低 GPT、DeepSeek-V3擅长的 思考方式 推理能力获得突破的关键是学会了「慢思考」 例:课堂提问 快问快答  长思维链强大的推理能力是真正人类智力的体现  预训练大模型是人记忆和学习的能力,推理模型是对复杂问题 进行规划、分解、预测的能力,实现了真正的慢思考 28 例:课后作业 仔细思考政企、创业者必读0 码力 | 76 页 | 5.02 MB | 5 月前3 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502追赶之战 • 大模型带来前所未有安全 挑战 • 外挂式传统安全手段难以 应对 • 应对模型安全新挑战,打 赢未雨绸缪之战 • 大模型是能力而非产品, 结合场景才能发挥价值 • 中国拥有最完整的产业链、 最全的工业门类、最丰富 的场景 • 发挥场景优势,加速传统 产业数转智改,打赢弯道 超车之战 AGI是全球少数玩家的游戏,政府、企业、创业者更多创新的机会在应用之路 11政企、创业者必读 把大模型拉下神坛! 全面超越人类的人工智能在逻辑上不成立政企、创业者必读 15 DeepSeek出现之前的十大预判 之二 慢思考成为新的发展模式  大模型发展范式正在从「预训练」转向「后训练」和「推理时计算」  大模型厂商都在探索慢思考、思维链技术政企、创业者必读 DeepSeek出现之前的十大预判 之三 模型越做越专  除了少数科技巨头,大多数公司都专注于做专业大模型  MoE架构盛行,本质是多个专家模型组成一个大模型  De 人类真正智力表现 的形式 直觉经验型 速度快、准确性低 GPT、DeepSeek-V3擅长的 思考方式 推理能力获得突破的关键是学会了「慢思考」 例:课堂提问 快问快答  长思维链强大的推理能力是真正人类智力的体现  预训练大模型是人记忆和学习的能力,推理模型是对复杂问题 进行规划、分解、预测的能力,实现了真正的慢思考 28 例:课后作业 仔细思考政企、创业者必读0 码力 | 76 页 | 5.02 MB | 5 月前3
 TVM工具组绝赞招聘中 TVM CAFFE 前端 2019·11·16绝赞招聘中 TVM 在平头哥 • 工具链产品 平头哥芯片平台发布的配套软件中, TVM 是工具链产品的重要组成部分: 负责将预训练好的 caffe 或者 tensorflow 的模型,转换到 LLVM IR,最后生成可以在无剑 SoC 平台上 执行的二进制。绝赞招聘中 为何添加 caffe 前端? 客户需求 评估0 码力 | 6 页 | 326.80 KB | 5 月前3 TVM工具组绝赞招聘中 TVM CAFFE 前端 2019·11·16绝赞招聘中 TVM 在平头哥 • 工具链产品 平头哥芯片平台发布的配套软件中, TVM 是工具链产品的重要组成部分: 负责将预训练好的 caffe 或者 tensorflow 的模型,转换到 LLVM IR,最后生成可以在无剑 SoC 平台上 执行的二进制。绝赞招聘中 为何添加 caffe 前端? 客户需求 评估0 码力 | 6 页 | 326.80 KB | 5 月前3
共 4 条
- 1













