 Rust 程序设计语言 简体中文版 1.85.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 16.4. 使用 Sync 与 Send Traits 的可扩展并发 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 17. Async . . . . 422 18. 面向对象编程特性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425 18.1. 面向对象语言的特征 . . . . . . . . . . . . 426 18.2. 顾及不同类型值的 trait 对象 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429 18.3. 面向对象设计模式的实现 . . . . . . . . . . . . . . .0 码力 | 562 页 | 3.23 MB | 25 天前3 Rust 程序设计语言 简体中文版 1.85.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 16.4. 使用 Sync 与 Send Traits 的可扩展并发 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 17. Async . . . . 422 18. 面向对象编程特性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425 18.1. 面向对象语言的特征 . . . . . . . . . . . . 426 18.2. 顾及不同类型值的 trait 对象 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429 18.3. 面向对象设计模式的实现 . . . . . . . . . . . . . . .0 码力 | 562 页 | 3.23 MB | 25 天前3
 人工智能安全治理框架 1.0推动政府、国际组织、企业、科研院所、民间机构和社会公众等各方,就人工 智能安全治理达成共识、协调一致,有效防范化解人工智能安全风险,制定本 框架。 1. 人工智能安全治理原则 秉持共同、综合、合作、可持续的安全观,坚持发展和安全并重,以促 进人工智能创新发展为第一要务,以有效防范化解人工智能安全风险为出发点 和落脚点,构建各方共同参与、技管结合、分工协作的治理机制,压实相关主 体安全责任,打 导的影响,可能带来性能下降、 决策错误等诸多问题。- 4 - 人工智能安全治理框架 (d)被窃取、篡改的风险。参数、结构、功能等算法核心信息,面临被 逆向攻击窃取、修改,甚至嵌入后门的风险,可导致知识产权被侵犯、商业机 密泄露,推理过程不可信、决策输出错误,甚至运行故障。 (e)输出不可靠风险。生成式人工智能可能产生 “幻觉”,即生成看似合理, 实则不符常理的内容,造成知识偏见与误导。 形态安全和伦理安全。如果用户输入的提示词存在不良内容,在模型安全防护 机制不完善的情况下,有可能输出违法有害内容。 (b)混淆事实、误导用户、绕过鉴权的风险。人工智能系统及输出内容 等未经标识,导致用户难以识别交互对象及生成内容来源是否为人工智能系统, 难以鉴别生成内容的真实性,影响用户判断,导致误解。同时,人工智能生成 图片、音频、视频等高仿真内容,可能绕过现有人脸识别、语音识别等身份认 证机制,导致认证鉴权失效。0 码力 | 20 页 | 3.79 MB | 1 月前3 人工智能安全治理框架 1.0推动政府、国际组织、企业、科研院所、民间机构和社会公众等各方,就人工 智能安全治理达成共识、协调一致,有效防范化解人工智能安全风险,制定本 框架。 1. 人工智能安全治理原则 秉持共同、综合、合作、可持续的安全观,坚持发展和安全并重,以促 进人工智能创新发展为第一要务,以有效防范化解人工智能安全风险为出发点 和落脚点,构建各方共同参与、技管结合、分工协作的治理机制,压实相关主 体安全责任,打 导的影响,可能带来性能下降、 决策错误等诸多问题。- 4 - 人工智能安全治理框架 (d)被窃取、篡改的风险。参数、结构、功能等算法核心信息,面临被 逆向攻击窃取、修改,甚至嵌入后门的风险,可导致知识产权被侵犯、商业机 密泄露,推理过程不可信、决策输出错误,甚至运行故障。 (e)输出不可靠风险。生成式人工智能可能产生 “幻觉”,即生成看似合理, 实则不符常理的内容,造成知识偏见与误导。 形态安全和伦理安全。如果用户输入的提示词存在不良内容,在模型安全防护 机制不完善的情况下,有可能输出违法有害内容。 (b)混淆事实、误导用户、绕过鉴权的风险。人工智能系统及输出内容 等未经标识,导致用户难以识别交互对象及生成内容来源是否为人工智能系统, 难以鉴别生成内容的真实性,影响用户判断,导致误解。同时,人工智能生成 图片、音频、视频等高仿真内容,可能绕过现有人脸识别、语音识别等身份认 证机制,导致认证鉴权失效。0 码力 | 20 页 | 3.79 MB | 1 月前3
 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502Law,改 写AI发展方向 30政企、创业者必读 DeepSeek在用户体验上实现了三件事  更加理解用户需求,降低Prompt要求  直接呈现思维过程,展现像真人一样思考的能力  可实时联网,把搜索能力与推理能力结合 DeepSeek颠覆式创新——用户体验 具备强大推理能力,思维过程更加缜密,智能性提升 用起来更像真人,写作能力更强,想象力更丰富 31政企、创业者必读 进的DeepSeek-R1 DeepSeek颠覆式创新——开源 33政企、创业者必读 新时代下的集中力量办大事  每个企业都可以直接使用DeepSeek,因为开源透明可信任,企业和 政府可做大量私有化部署  一个开源产品获得突破之后,全世界都能分享成果,结束中国百模大 战,节省大量成本  很多公司参与开源,帮助改进产品,很多人基于DS生态开发应用产 品,增加影响力,人人为我,我为人人 成本的急剧降低  DeepSeek可适配国产硬件,促进国产硬件发展  DeepSeek的优化降低对推理硬件的要求,减少推理成本  训练成本降低,堆显卡模式受质疑,探索新思路,算法优化空间大  无需训练自己的基座模型,直接部署在DeepSeek上,不用重复发明轮子  公开蒸馏方法,帮助其他模型提升能力,实现了模型制造模型,犹如工业母机  小模型可部署在企业内电脑或一体机上,使用成本降低,形成分布式推理网络0 码力 | 76 页 | 5.02 MB | 5 月前3 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502Law,改 写AI发展方向 30政企、创业者必读 DeepSeek在用户体验上实现了三件事  更加理解用户需求,降低Prompt要求  直接呈现思维过程,展现像真人一样思考的能力  可实时联网,把搜索能力与推理能力结合 DeepSeek颠覆式创新——用户体验 具备强大推理能力,思维过程更加缜密,智能性提升 用起来更像真人,写作能力更强,想象力更丰富 31政企、创业者必读 进的DeepSeek-R1 DeepSeek颠覆式创新——开源 33政企、创业者必读 新时代下的集中力量办大事  每个企业都可以直接使用DeepSeek,因为开源透明可信任,企业和 政府可做大量私有化部署  一个开源产品获得突破之后,全世界都能分享成果,结束中国百模大 战,节省大量成本  很多公司参与开源,帮助改进产品,很多人基于DS生态开发应用产 品,增加影响力,人人为我,我为人人 成本的急剧降低  DeepSeek可适配国产硬件,促进国产硬件发展  DeepSeek的优化降低对推理硬件的要求,减少推理成本  训练成本降低,堆显卡模式受质疑,探索新思路,算法优化空间大  无需训练自己的基座模型,直接部署在DeepSeek上,不用重复发明轮子  公开蒸馏方法,帮助其他模型提升能力,实现了模型制造模型,犹如工业母机  小模型可部署在企业内电脑或一体机上,使用成本降低,形成分布式推理网络0 码力 | 76 页 | 5.02 MB | 5 月前3
 TVM@AliOS。, Performance is our focus next. We tvm.caLL_pure_intrin begin to do some work now. Such 本 站,可 as writing Tensorize to generate vec tvm,const(0, vrmpy instruction when we meet0 码力 | 27 页 | 4.86 MB | 5 月前3 TVM@AliOS。, Performance is our focus next. We tvm.caLL_pure_intrin begin to do some work now. Such 本 站,可 as writing Tensorize to generate vec tvm,const(0, vrmpy instruction when we meet0 码力 | 27 页 | 4.86 MB | 5 月前3
共 4 条
- 1













