积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(2)人工智能(2)后端开发(1)Rust(1)

语言

全部中文(简体)(3)

格式

全部PDF文档 PDF(3)
 
本次搜索耗时 0.032 秒,为您找到相关结果约 3 个.
  • 全部
  • 综合其他
  • 人工智能
  • 后端开发
  • Rust
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502

    累知识,Scaling law撞墙  预训练模型思考深度不够  算力见顶,变成少数巨头游戏 预训练大模型 推理大模型 预训练大模型难以通往AGI之路  推理模型如R1——通过逻辑链条推导答案, 分解规划,自我反思  预训练范式像是记忆和模仿,强化学习范 式更像探索实践  记住很多东西只是基础,真正有价值的是 融会贯通 R1找到了人类通往AGI的方向 DeepSeek颠覆式创新——技术创新 思考方式 推理能力获得突破的关键是学会了「慢思考」 例:课堂提问 快问快答  长思维链强大的推理能力是真正人类智力的体现  预训练大模型是人记忆和学习的能力,推理模型是对复杂问题 进行规划、分解、预测的能力,实现了真正的慢思考 28 例:课后作业 仔细思考政企、创业者必读 DeepSeek-R1是AI发展史上的重要里程碑 R1形成了新的AGI定律,加速了AGI发展 Alpha • 高炉温度分布 • 高炉燃料比监测 • 高炉精准出铁预测 • 高炉炉况诊断 • 高炉燎铁能耗预测 • 高炉在含量智能预监 • 铁包动态调度算法(铁包 跟踪) • 烟气余热回收控制 • 部署工艺模型分析诊断 • 能源诊断分析 • 建设质量工艺动态设计 优化 • 堆堵料异常检测 • 炼铁原料混匀过程调度 优化 • 风机风压参数实时捕捉 和分析检验 • ·计算最佳工艺参数 • 炼钢工序物料属性检测
    0 码力 | 76 页 | 5.02 MB | 5 月前
    3
  • pdf文档 Rust 程序设计语言 简体中文版 1.85.0

    # Windows 是 .\main.exe 如果这里的 main.rs 是上文所述的 “Hello, world!” 程序,那么在终端上就会打印出 Hello, world!。 如果你更熟悉动态语言,如 Ruby、Python 或 JavaScript,则可能不习惯将编译和运行分为两 个单独的步骤。Rust 是一种 预编译静态类型(ahead-of-time compiled)语言,这意味着你可 bound 让我们能够使用泛型类型参数来减少重复,而且能够向编译器明确指定泛 型类型需要拥有哪些行为。然后编译器可以利用 trait bound 信息检查代码中所用到的具体类 型是否提供了正确的行为。在动态类型语言中,如果我们调用了一个未定义的方法,会在运行 时出现错误。Rust 将这些错误移动到了编译时,甚至在代码能够运行之前就强迫我们修复问 题。另外,我们也无需编写运行时检查行为的代码,因为在编译时就已经检查过了。这样既提 信息的子串。我们可以指定期望的整个 panic 信息,在这个例子中是 Guess value must be less than or equal to 100, got 200 。信息的选择取决于 panic 信息 有多独特或动态,和你希望测试有多准确。在这个例子中,错误信息的子字符串足以确保函数 在 else if value > 100 的情况下运行。 为了观察带有 expected 信息的 should_panic
    0 码力 | 562 页 | 3.23 MB | 25 天前
    3
  • pdf文档 人工智能安全治理框架 1.0

    人工智能安全治理框架 1.2 风险导向、敏捷治理。密切跟踪人工智能研发及应用趋势,从人工 智能技术自身、人工智能应用两方面分析梳理安全风险,提出针对性防范应对 措施。关注安全风险发展变化,快速动态精准调整治理措施,持续优化治理机 制和方式,对确需政府监管事项及时予以响应。 1.3 技管结合、协同应对。面向人工智能研发应用全过程,综合运用技术、 管理相结合的安全治理措施,防范应对不同类型安全风险。围绕人工智能研发 基于风险管理理念,本框架针对不同类型的人工智能安全风险,从技术、 管理两方面提出防范应对措施。同时,目前人工智能研发应用仍在快速发展, 安全风险的表现形式、影响程度、认识感知亦随之变化,防范应对措施也将相 应动态调整更新,需要各方共同对治理框架持续优化完善。 2.1 安全风险方面。通过分析人工智能技术特性,以及在不同行业领域 应用场景,梳理人工智能技术本身,及其在应用过程中面临的各种安全风险 隐患。
    0 码力 | 20 页 | 3.79 MB | 1 月前
    3
共 3 条
  • 1
前往
页
相关搜索词
周鸿祎清华演讲DeepSeek我们带来创业机会360202502Rust程序设计程序设计语言简体中文文版中文版简体中文版1.85人工智能人工智能安全治理框架1.0
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩