【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502追赶之战 • 大模型带来前所未有安全 挑战 • 外挂式传统安全手段难以 应对 • 应对模型安全新挑战,打 赢未雨绸缪之战 • 大模型是能力而非产品, 结合场景才能发挥价值 • 中国拥有最完整的产业链、 最全的工业门类、最丰富 的场景 • 发挥场景优势,加速传统 产业数转智改,打赢弯道 超车之战 AGI是全球少数玩家的游戏,政府、企业、创业者更多创新的机会在应用之路 11政企、创业者必读 把大模型拉下神坛! 全面超越人类的人工智能在逻辑上不成立政企、创业者必读 15 DeepSeek出现之前的十大预判 之二 慢思考成为新的发展模式 大模型发展范式正在从「预训练」转向「后训练」和「推理时计算」 大模型厂商都在探索慢思考、思维链技术政企、创业者必读 DeepSeek出现之前的十大预判 之三 模型越做越专 除了少数科技巨头,大多数公司都专注于做专业大模型 MoE架构盛行,本质是多个专家模型组成一个大模型 De 人类真正智力表现 的形式 直觉经验型 速度快、准确性低 GPT、DeepSeek-V3擅长的 思考方式 推理能力获得突破的关键是学会了「慢思考」 例:课堂提问 快问快答 长思维链强大的推理能力是真正人类智力的体现 预训练大模型是人记忆和学习的能力,推理模型是对复杂问题 进行规划、分解、预测的能力,实现了真正的慢思考 28 例:课后作业 仔细思考政企、创业者必读0 码力 | 76 页 | 5.02 MB | 5 月前3
人工智能安全治理框架 1.0风险导向、敏捷治理。密切跟踪人工智能研发及应用趋势,从人工 智能技术自身、人工智能应用两方面分析梳理安全风险,提出针对性防范应对 措施。关注安全风险发展变化,快速动态精准调整治理措施,持续优化治理机 制和方式,对确需政府监管事项及时予以响应。 1.3 技管结合、协同应对。面向人工智能研发应用全过程,综合运用技术、 管理相结合的安全治理措施,防范应对不同类型安全风险。围绕人工智能研发 应用生态链,明确模 基础设施,涉及多源、 泛在算力节点,不同类型计算资源,面临算力资源恶意消耗、算力层面风险跨 边界传递等风险。 (c)供应链安全风险。人工智能产业链呈现高度全球化分工协作格局。 但个别国家利用技术垄断和出口管制等单边强制措施制造发展壁垒,恶意阻断 全球人工智能供应链,带来突出的芯片、软件、工具断供风险。 3.2 人工智能应用安全风险 3.2.1 网络域安全风险 (a)信息内容安全风险 人工智能安全治理框架 (c)加强人工智能算力平台和系统服务的安全建设、管理、运维能力, 确保基础设施和服务运行不中断。 (d)对于人工智能系统采用的芯片、软件、工具、算力和数据资源,应 高度关注供应链安全。跟踪软硬件产品的漏洞、缺陷信息并及时采取修补加固 措施,保证系统安全性。 4.2 针对人工智能应用安全风险 4.2.1 网络域风险应对 (a)建立安全防护机制,防止模型运行过程中被干扰、篡改而输出不可0 码力 | 20 页 | 3.79 MB | 1 月前3
Rust 程序设计语言 简体中文版 1.85.0或损坏。 Rust 破除了这些障碍:它消除了旧的陷阱,并提供了伴你一路同行的友好、精良的工具。想 要 “深入” 底层控制的程序员可以使用 Rust,无需时刻担心出现崩溃或安全漏洞,也无需因为 工具链不靠谱而被迫去了解其中的细节。更妙的是,语言设计本身会自然而然地引导你编写出 可靠的代码,并且运行速度和内存使用上都十分高效。 已经在从事编写底层代码的程序员可以使用 Rust 来提升信心。例如,在 值,第一部分代码就 39/562Rust 程序设计语言 简体中文版 有可能以不可预料的方式运行。不得不承认这种 bug 的起因难以跟踪,尤其是第二部分代码 只是 有时 会改变值。 Rust 编译器保证,如果声明一个值不会变,它就真的不会变,所以你不必自己跟踪它。这意 味着你的代码更易于推导。 不过可变性也是非常有用的,可以用来更方便地编写代码。尽管变量默认是不可变的,你仍然 可以在变量名前添加 需要在编译时就确切的知道 number 变量的类型,这样它就 可以在编译时验证在每处使用的 number 变量的类型是有效的。如果number的类型仅在运行时 确定,则 Rust 无法做到这一点;且编译器必须跟踪每一个变量的多种假设类型,那么它就会 变得更加复杂,对代码的保证也会减少。 使用循环重复执行 多次执行同一段代码是很常用的,Rust 为此提供了多种 循环(loops)。一个循环执行循环体 中的0 码力 | 562 页 | 3.23 MB | 23 天前3
TVM工具组绝赞招聘中 TVM CAFFE 前端 2019·11·16绝赞招聘中 TVM 在平头哥 • 工具链产品 平头哥芯片平台发布的配套软件中, TVM 是工具链产品的重要组成部分: 负责将预训练好的 caffe 或者 tensorflow 的模型,转换到 LLVM IR,最后生成可以在无剑 SoC 平台上 执行的二进制。绝赞招聘中 为何添加 caffe 前端? 客户需求 评估0 码力 | 6 页 | 326.80 KB | 5 月前3
共 4 条
- 1













