 Curve支持S3 数据缓存方案背景 整体设计 元数据采用2层索引 对象名设计 读写缓存分离 缓存层级 对外接口 后台刷数据线程 本地磁盘缓存 关键数据结构 详细设计 Write流程 Read流程 ReleaseCache流程 Flush流程 FsSync流程 后台流程 poc测试验证 背景 基于s3的daemon版本基于基本的性能测试发现性能非常差。具体数据如下: 通过日志初步分析有2点原因© XXX Page 3操作过多 2.对于4k 小io每次都要和s3交互,导致性能非常差。 因此需要通过Cache模块解决以上2个问题。 整体设计 整个dataCache的设计思路,在写场景下能将数据尽可能的合并后flush到s3上,在读场景上,能够预读1个block大小,减少顺序读对于底层s3的访问频次。从这个思路上该缓存方案主要针对的场景是顺序写和顺序 读,而对于随机写和随机读来说也会有一定性能提升,但效果可能不会太好。 +inodeId。增加inodeId的目的是为了后续从对象存储上遍历,反查文件,这里就要求inodeId是永远不可重复。 读写缓存分离 读写缓存的设计采用的是读写缓存分离的方案。 写缓存一旦flush即释放,读缓存采用可设置的策略进行淘汰(默认LRU),对于小io进行block级别的预读。 即读写缓存相互没影响不相关, 缓存层级 缓存层级分为fs->file->chunk->datacache0 码力 | 9 页 | 179.72 KB | 6 月前3 Curve支持S3 数据缓存方案背景 整体设计 元数据采用2层索引 对象名设计 读写缓存分离 缓存层级 对外接口 后台刷数据线程 本地磁盘缓存 关键数据结构 详细设计 Write流程 Read流程 ReleaseCache流程 Flush流程 FsSync流程 后台流程 poc测试验证 背景 基于s3的daemon版本基于基本的性能测试发现性能非常差。具体数据如下: 通过日志初步分析有2点原因© XXX Page 3操作过多 2.对于4k 小io每次都要和s3交互,导致性能非常差。 因此需要通过Cache模块解决以上2个问题。 整体设计 整个dataCache的设计思路,在写场景下能将数据尽可能的合并后flush到s3上,在读场景上,能够预读1个block大小,减少顺序读对于底层s3的访问频次。从这个思路上该缓存方案主要针对的场景是顺序写和顺序 读,而对于随机写和随机读来说也会有一定性能提升,但效果可能不会太好。 +inodeId。增加inodeId的目的是为了后续从对象存储上遍历,反查文件,这里就要求inodeId是永远不可重复。 读写缓存分离 读写缓存的设计采用的是读写缓存分离的方案。 写缓存一旦flush即释放,读缓存采用可设置的策略进行淘汰(默认LRU),对于小io进行block级别的预读。 即读写缓存相互没影响不相关, 缓存层级 缓存层级分为fs->file->chunk->datacache0 码力 | 9 页 | 179.72 KB | 6 月前3
 NJSD eBPF 技术文档 - 0924版本差异⼤,延迟⾼FUSE⽂件IO读写流程 • 场景1 pytorch example word_language_model • LOOKUP inode 返回 fstat + timeout设置 • OPEN 打开 inode返回ok • GETATTR 返回fstat • READ inode 读取的内容不等从16KB到128KB • 关闭⽂件时会发送FLUSH请求和RELEASE请求 timeout设置 • WRITE 写⼊内容从0~16KB不等 • SETATTR inode 根据UID,ATIME,CTIME,length来设置属性 • 关闭⽂件时会发送FLUSH请求和RELEASE请求FUSE⽂件IO读写流程FUSE的IO路径及瓶颈分析 • 对⽐测试 • ⽂件访问测试直接访问ext4 • 通过FUSE访问passthrough_ll底层ext4 • 内核调⽤延迟测试 • fuse_ll_ops开销10us-基于FUSE的优化框架 • 框架优化的要点 • 共享inode cache • 共享data cache的映射 • GETATTR流程 • ⽂件读取流程 • 相关⼯作 • extFUSE • google android12 passthrough什么是eBPF • ebpf是不同环境下内核配置, 调试,监控⼯具 • map映射0 码力 | 20 页 | 7.40 MB | 6 月前3 NJSD eBPF 技术文档 - 0924版本差异⼤,延迟⾼FUSE⽂件IO读写流程 • 场景1 pytorch example word_language_model • LOOKUP inode 返回 fstat + timeout设置 • OPEN 打开 inode返回ok • GETATTR 返回fstat • READ inode 读取的内容不等从16KB到128KB • 关闭⽂件时会发送FLUSH请求和RELEASE请求 timeout设置 • WRITE 写⼊内容从0~16KB不等 • SETATTR inode 根据UID,ATIME,CTIME,length来设置属性 • 关闭⽂件时会发送FLUSH请求和RELEASE请求FUSE⽂件IO读写流程FUSE的IO路径及瓶颈分析 • 对⽐测试 • ⽂件访问测试直接访问ext4 • 通过FUSE访问passthrough_ll底层ext4 • 内核调⽤延迟测试 • fuse_ll_ops开销10us-基于FUSE的优化框架 • 框架优化的要点 • 共享inode cache • 共享data cache的映射 • GETATTR流程 • ⽂件读取流程 • 相关⼯作 • extFUSE • google android12 passthrough什么是eBPF • ebpf是不同环境下内核配置, 调试,监控⼯具 • map映射0 码力 | 20 页 | 7.40 MB | 6 月前3
 CurveFS对接S3方案设计2021-05-20 胡遥 初稿 2021-07-20 胡遥 细化write和read流程 整体架构 整体思路 接口和关键数据结构 mds.proto client端数据结构 metaserver.proto space相关数据结构和proto 关键流程 init流程 write流程 read流程 整体架构 S3ClientAdaptor模块:负责将文件数据进行chunk,以及bl 11 整体思路 curvefs对接s3和对接volume主要的区别在于数据持久化和空间分配部分,而元数据的操作尽量保持统一。因此我们涉及到修改client的流程主要在read/write/flush,以及空间分配申请(s3不需要释放空间,可 直接删除对应s3 object) 文件首先会按照chunk进行拆分,每个chunk固定64M/1G(待定),chunk内 private: std::atomic CurveFS对接S3方案设计2021-05-20 胡遥 初稿 2021-07-20 胡遥 细化write和read流程 整体架构 整体思路 接口和关键数据结构 mds.proto client端数据结构 metaserver.proto space相关数据结构和proto 关键流程 init流程 write流程 read流程 整体架构 S3ClientAdaptor模块:负责将文件数据进行chunk,以及bl 11 整体思路 curvefs对接s3和对接volume主要的区别在于数据持久化和空间分配部分,而元数据的操作尽量保持统一。因此我们涉及到修改client的流程主要在read/write/flush,以及空间分配申请(s3不需要释放空间,可 直接删除对应s3 object) 文件首先会按照chunk进行拆分,每个chunk固定64M/1G(待定),chunk内 private: std::atomic- chunkId_;© XXX Page 10 of 11 }; 关键流程 关键流程包括S3ClientAdaptor的init,write,read,delete和后台元数据整理以及数据回收流程 init流程 1.将conf中blockSize,chunkSize,metaServer和allocateServer ip保存在S3ClientAdaptor中 0 码力 | 11 页 | 145.77 KB | 6 月前3
 Curve文件系统空间分配方案Curve文件系统空间分配方案(基于块的方案,已实现)© XXX Page 2 of 11 背景 本地文件系统空间分配相关特性 局部性 延迟分配/Allocate-on-flush Inline file/data 空间分配 整体设计 空间分配流程 特殊情况 空间回收 小文件处理 并发问题 文件系统扩容 接口设计 RPC接口 空间分配器接口 背景 根据 ,文件系统基于当前的块进行实现,所以需要 分) 本地文件系统空间分配相关特性 局部性 尽量分配连续的磁盘空间,存储文件的数据。这一特性主要是针对HDD进行的优化,降低磁盘寻道时间。 延迟分配/Allocate-on-flush 在sync/flush之前,尽可能多的积累更多的文件数据块才进行空间分配,一方面可以提高局部性,另一方面可以降低磁盘碎片。 Inline file/data 几百字节的小文件不单独分配磁盘空间,直接把数据存放到文件的元数据中。 ree对所有的free extent进行管理)。 当前设计不考虑持久化问题,空间分配器只作为内存结构,负责空间的分配与回收。在初始化时,扫描文件系统所有inode中已使用的空间。 空间分配流程 在新文件进行空间分配时,随机选择level1中标记为0的块,先预分配给这个文件,但是并不表示这个块被该文件独占。© XXX Page 4 of 11 1. 2. 3. 以下图为0 码力 | 11 页 | 159.17 KB | 6 月前3 Curve文件系统空间分配方案Curve文件系统空间分配方案(基于块的方案,已实现)© XXX Page 2 of 11 背景 本地文件系统空间分配相关特性 局部性 延迟分配/Allocate-on-flush Inline file/data 空间分配 整体设计 空间分配流程 特殊情况 空间回收 小文件处理 并发问题 文件系统扩容 接口设计 RPC接口 空间分配器接口 背景 根据 ,文件系统基于当前的块进行实现,所以需要 分) 本地文件系统空间分配相关特性 局部性 尽量分配连续的磁盘空间,存储文件的数据。这一特性主要是针对HDD进行的优化,降低磁盘寻道时间。 延迟分配/Allocate-on-flush 在sync/flush之前,尽可能多的积累更多的文件数据块才进行空间分配,一方面可以提高局部性,另一方面可以降低磁盘碎片。 Inline file/data 几百字节的小文件不单独分配磁盘空间,直接把数据存放到文件的元数据中。 ree对所有的free extent进行管理)。 当前设计不考虑持久化问题,空间分配器只作为内存结构,负责空间的分配与回收。在初始化时,扫描文件系统所有inode中已使用的空间。 空间分配流程 在新文件进行空间分配时,随机选择level1中标记为0的块,先预分配给这个文件,但是并不表示这个块被该文件独占。© XXX Page 4 of 11 1. 2. 3. 以下图为0 码力 | 11 页 | 159.17 KB | 6 月前3
 Curve元数据节点高可用clientV3的concurrency模块构成 3.2 Campaign的流程 3.2.1 代码流程说明 3.2.2 举例说明Campagin流程 3.3 Observe的流程 4. MDS使用election模块的功能进行选主 4.1 Curve中MDS的选举过程 4.2 图示说明选举流程 4.2.1 正常流程 4.2.2 异常情况1:MDS1退出,可以正常处理 4.2.3 异常情况 30 1. 2. Campagin用于leader竞选 Observe用于监测集群中leader的变化 3.2 Campaign的流程 3.2.1 代码流程说明 如对相关代码实现不感兴趣,请直接跳到 3.2.2 举例说明Campagin流程 按照官方对Campagin的定义: blocked until it becomes the leader func (e *Election) leaderSession = nil } return err } e.hdr = resp.Header© XXX Page 7 of 30 return nil } 代码流程说明如下:© XXX Page 8 of 30© XXX Page 9 of 30© XXX Page 10 of 30 etcd中的revision是全局的,只要有key-value的修改(put0 码力 | 30 页 | 2.42 MB | 6 月前3 Curve元数据节点高可用clientV3的concurrency模块构成 3.2 Campaign的流程 3.2.1 代码流程说明 3.2.2 举例说明Campagin流程 3.3 Observe的流程 4. MDS使用election模块的功能进行选主 4.1 Curve中MDS的选举过程 4.2 图示说明选举流程 4.2.1 正常流程 4.2.2 异常情况1:MDS1退出,可以正常处理 4.2.3 异常情况 30 1. 2. Campagin用于leader竞选 Observe用于监测集群中leader的变化 3.2 Campaign的流程 3.2.1 代码流程说明 如对相关代码实现不感兴趣,请直接跳到 3.2.2 举例说明Campagin流程 按照官方对Campagin的定义: blocked until it becomes the leader func (e *Election) leaderSession = nil } return err } e.hdr = resp.Header© XXX Page 7 of 30 return nil } 代码流程说明如下:© XXX Page 8 of 30© XXX Page 9 of 30© XXX Page 10 of 30 etcd中的revision是全局的,只要有key-value的修改(put0 码力 | 30 页 | 2.42 MB | 6 月前3
 Curve质量监控与运维 - 网易数帆软件质量的定义是:软件与明确地和隐含地定义的需求相一致的程度。 为了确保最终交付的软件满足需求,必须将质量控制贯穿于设计、开发到测试的整个流程中。 设计  设计流程  文档规范 开发  编码规范与提交流程  版本管理 测试  测试方法论  CI与异常测试 6/33设计流程 Curve团队采用敏捷开发模式,负责人在制定迭代计划时,确认哪些任务需要设计 文档:  小需求(改动小)将实 小需求 实现思路 开发 大需求 设计文档 POC 开发 7/33设计文档规范 设计文档需要具备以下内容:  修订记录  审批记录  系统介绍  相关调研  架构  重要流程  关键算法  接口  数据库设计  非功能特性设计  参考文献 8/33代码编写规范 Curve代码编写规范遵循Google Style Guides(https://google Dailybuild测试 提交issue 开发设计 提交PR review +1 CI测试(编译、静态检 查、单元测试、集成测 试、覆盖率80%卡点) 合入master 分支 代码提交流程 异常自动化 测试 混沌测试 (每周一次) CI测试(编译、静态检 查、单元测试、集成测 试、覆盖率80%卡点) 邮件通知 Curve所有代码均在github托管。新 代码需要通过CI测试和code0 码力 | 33 页 | 2.64 MB | 6 月前3 Curve质量监控与运维 - 网易数帆软件质量的定义是:软件与明确地和隐含地定义的需求相一致的程度。 为了确保最终交付的软件满足需求,必须将质量控制贯穿于设计、开发到测试的整个流程中。 设计  设计流程  文档规范 开发  编码规范与提交流程  版本管理 测试  测试方法论  CI与异常测试 6/33设计流程 Curve团队采用敏捷开发模式,负责人在制定迭代计划时,确认哪些任务需要设计 文档:  小需求(改动小)将实 小需求 实现思路 开发 大需求 设计文档 POC 开发 7/33设计文档规范 设计文档需要具备以下内容:  修订记录  审批记录  系统介绍  相关调研  架构  重要流程  关键算法  接口  数据库设计  非功能特性设计  参考文献 8/33代码编写规范 Curve代码编写规范遵循Google Style Guides(https://google Dailybuild测试 提交issue 开发设计 提交PR review +1 CI测试(编译、静态检 查、单元测试、集成测 试、覆盖率80%卡点) 合入master 分支 代码提交流程 异常自动化 测试 混沌测试 (每周一次) CI测试(编译、静态检 查、单元测试、集成测 试、覆盖率80%卡点) 邮件通知 Curve所有代码均在github托管。新 代码需要通过CI测试和code0 码力 | 33 页 | 2.64 MB | 6 月前3
 CurveFS Copyset与FS对应关系copyset个数是否可以动态调整? 4、curvefs的topo信息 5、curvefs mds和metaserver的心跳 6、详细设计 6.1 创建fs 6.2、挂载fs 6.3、创建文件/目录 6.4、open流程 6.5、读写流程 6.6、topology 7、工作评估 7.1 client端 7.2 mds端 7.3 metaserver端 metaserver 子模块拆分 8、inode和dentry的内存估算 对应的copyset上插入一条rootinode的记录。最后修改fs状态为INITED。© XXX Page 10 of 19© XXX Page 11 of 19 6.2、挂载fs 挂载fs的流程不变,client向mds发送mount rpc请求,mds对fs进行相应的检查,然后记录挂载点返回成功。 1、检查文件系统是否存在 2、检查fs的状态,是否是INITED状态 3、检查挂载点是否已经存在 就为这个fs创 建一个新的copyset。© XXX Page 12 of 19© XXX Page 13 of 19 6.4、open流程© XXX Page 14 of 19© XXX Page 15 of 19 6.5、读写流程 读写流程和之前的读写流程大致保持不变。变化点在于之前inode修改是直接去metaserver上修改,现在变成了去copyset上修改。 client端缓存所0 码力 | 19 页 | 383.29 KB | 6 月前3 CurveFS Copyset与FS对应关系copyset个数是否可以动态调整? 4、curvefs的topo信息 5、curvefs mds和metaserver的心跳 6、详细设计 6.1 创建fs 6.2、挂载fs 6.3、创建文件/目录 6.4、open流程 6.5、读写流程 6.6、topology 7、工作评估 7.1 client端 7.2 mds端 7.3 metaserver端 metaserver 子模块拆分 8、inode和dentry的内存估算 对应的copyset上插入一条rootinode的记录。最后修改fs状态为INITED。© XXX Page 10 of 19© XXX Page 11 of 19 6.2、挂载fs 挂载fs的流程不变,client向mds发送mount rpc请求,mds对fs进行相应的检查,然后记录挂载点返回成功。 1、检查文件系统是否存在 2、检查fs的状态,是否是INITED状态 3、检查挂载点是否已经存在 就为这个fs创 建一个新的copyset。© XXX Page 12 of 19© XXX Page 13 of 19 6.4、open流程© XXX Page 14 of 19© XXX Page 15 of 19 6.5、读写流程 读写流程和之前的读写流程大致保持不变。变化点在于之前inode修改是直接去metaserver上修改,现在变成了去copyset上修改。 client端缓存所0 码力 | 19 页 | 383.29 KB | 6 月前3
 Curve核心组件之Client - 网易数帆ChunkServer:通过raft维护复制组内的主-从关系CLIENT IO流程 用户下发一个写请求 off: 8M len: 16M 请求落在两个逻辑chunk上,所以 请求会被拆分成两个子请求:  ChunkIdx 1, off: 8M len 8M  ChunkIdx 2, off: 0 len 8MCLIENT IO流程 子请求由哪个chunkserver处理,依赖以 下信息: 复制组所在的chunkserver列表  复制组的leader信息CLIENT IO流程 逻辑chunk与物理chunk映射关系 物理chunk所属的复制组(copyset)  由MDS分配并持久化,client拆分用户请 求时会获取并进行缓存  为了减少元数据量,MDS一次会连续分配 1G范围内的映射关系,称为SegmentCLIENT IO流程 复制组所在的chunkserver列表  chunkserver心跳定期上报给MDS 通过MDSClient向MDS获取 复制组的leader信息  复制组之间通过raft维护  通过CliClient向Chunkserver获取 这两种信息client也会进行缓存 上报心跳CLIENT IO流程 子请求处理步骤: 1. 从MDS获取逻辑chunk与物理chunk的 对应关系(包含逻辑池以及复制组信息) 2. 从MDS获取复制组所在的机器列表 3. 从Chunkserver获取复制组leader信息0 码力 | 27 页 | 1.57 MB | 6 月前3 Curve核心组件之Client - 网易数帆ChunkServer:通过raft维护复制组内的主-从关系CLIENT IO流程 用户下发一个写请求 off: 8M len: 16M 请求落在两个逻辑chunk上,所以 请求会被拆分成两个子请求:  ChunkIdx 1, off: 8M len 8M  ChunkIdx 2, off: 0 len 8MCLIENT IO流程 子请求由哪个chunkserver处理,依赖以 下信息: 复制组所在的chunkserver列表  复制组的leader信息CLIENT IO流程 逻辑chunk与物理chunk映射关系 物理chunk所属的复制组(copyset)  由MDS分配并持久化,client拆分用户请 求时会获取并进行缓存  为了减少元数据量,MDS一次会连续分配 1G范围内的映射关系,称为SegmentCLIENT IO流程 复制组所在的chunkserver列表  chunkserver心跳定期上报给MDS 通过MDSClient向MDS获取 复制组的leader信息  复制组之间通过raft维护  通过CliClient向Chunkserver获取 这两种信息client也会进行缓存 上报心跳CLIENT IO流程 子请求处理步骤: 1. 从MDS获取逻辑chunk与物理chunk的 对应关系(包含逻辑池以及复制组信息) 2. 从MDS获取复制组所在的机器列表 3. 从Chunkserver获取复制组leader信息0 码力 | 27 页 | 1.57 MB | 6 月前3
 Curve核心组件之snapshotcloneCurveClient封装了Client接口,负责与MDS和ChunkServer交互。 CurveClient: • 负责管理快照和克隆源卷的引用计数。 SnapshotRef & CloneRef:快照总体流程 • 1.用户发起快照,生成快照任务,并持久化到 etcd,开始执行快照任务。 • 2.在curve中创建内部快照,并返回快照信息, 然后将快照信息更新到etcd。此时,即返回用 户快照成功,可以进行读写。 • 4.根据快照元数据信息,转储快照数据块 dataObject。 • 5.调用mds接口,移除curve内部的快照。 • 6.mds调用chunkserver接口,删除内部快照 数据 快照流程: chunk chunk chunk chunkserver meta object data object data object S3 Snap Task etcd mds file产生,直接读取chunk file b) 打快照后写过,触发了cow, 有snap file, 合并读取 c) 卷从未写过, 两者都没有,返回NOTEXIST 转储内部快照,即读内部快照的三种情况:克隆总体流程 • 1. 用户发起克隆,生成克隆任务,并持 久化任务元数据到etcd,开始执行克隆 任务。 • 2. 调用mds接口创建clone卷信息,该 clone卷是个临时卷,位于/clone目录下。0 码力 | 23 页 | 1.32 MB | 6 月前3 Curve核心组件之snapshotcloneCurveClient封装了Client接口,负责与MDS和ChunkServer交互。 CurveClient: • 负责管理快照和克隆源卷的引用计数。 SnapshotRef & CloneRef:快照总体流程 • 1.用户发起快照,生成快照任务,并持久化到 etcd,开始执行快照任务。 • 2.在curve中创建内部快照,并返回快照信息, 然后将快照信息更新到etcd。此时,即返回用 户快照成功,可以进行读写。 • 4.根据快照元数据信息,转储快照数据块 dataObject。 • 5.调用mds接口,移除curve内部的快照。 • 6.mds调用chunkserver接口,删除内部快照 数据 快照流程: chunk chunk chunk chunkserver meta object data object data object S3 Snap Task etcd mds file产生,直接读取chunk file b) 打快照后写过,触发了cow, 有snap file, 合并读取 c) 卷从未写过, 两者都没有,返回NOTEXIST 转储内部快照,即读内部快照的三种情况:克隆总体流程 • 1. 用户发起克隆,生成克隆任务,并持 久化任务元数据到etcd,开始执行克隆 任务。 • 2. 调用mds接口创建clone卷信息,该 clone卷是个临时卷,位于/clone目录下。0 码力 | 23 页 | 1.32 MB | 6 月前3
 Curve核心组件之chunkserver完成raft成员之间的选举,日志复制, 安装快照等操作。 ChunkServer架构CopysetNode封装了braft的Node,并 实现了braft的状态机,完成与raft的交 互。详细交互流程后面展开。 CopysetNodeManager负责管理 CopysetNode的创建、初始化、删除等 ChunkServer架构心跳模块有两方面的职责: 1、向MDS节点上报心跳,心跳中包括 entry成功,并且有一个peer也落 盘成功,则commit 5. Commit后apply,此时把写请求写到chunkChunkServer核心模块-CopysetNode 坏盘(CS1对应的盘)后的迁移流程 初始状态,copyset1,copyset2,copyset3的三个副本分别在 CS1,CS3,CS4上,完成迁移后,CS1上的副本迁移到CS2上 ① CS1超时未向MDS上报心跳(默认半小时) ⑧ MDS在得知CS1上的所有copyset都成功迁移后,把CS1设置为 retired,CS1下线完毕。ChunkServer核心模块-CopysetNode 换盘(CS1对应的盘)后重新上线的流程 初始状态,copyset1,copyset2,copyset3的三个副本分别在 CS2,CS3,CS4上,完成恢复后,CS2上的copyset1,2,3迁移到CS1上 ① CS1换了新盘,并重新格式化后启动chunkserver0 码力 | 29 页 | 1.61 MB | 6 月前3 Curve核心组件之chunkserver完成raft成员之间的选举,日志复制, 安装快照等操作。 ChunkServer架构CopysetNode封装了braft的Node,并 实现了braft的状态机,完成与raft的交 互。详细交互流程后面展开。 CopysetNodeManager负责管理 CopysetNode的创建、初始化、删除等 ChunkServer架构心跳模块有两方面的职责: 1、向MDS节点上报心跳,心跳中包括 entry成功,并且有一个peer也落 盘成功,则commit 5. Commit后apply,此时把写请求写到chunkChunkServer核心模块-CopysetNode 坏盘(CS1对应的盘)后的迁移流程 初始状态,copyset1,copyset2,copyset3的三个副本分别在 CS1,CS3,CS4上,完成迁移后,CS1上的副本迁移到CS2上 ① CS1超时未向MDS上报心跳(默认半小时) ⑧ MDS在得知CS1上的所有copyset都成功迁移后,把CS1设置为 retired,CS1下线完毕。ChunkServer核心模块-CopysetNode 换盘(CS1对应的盘)后重新上线的流程 初始状态,copyset1,copyset2,copyset3的三个副本分别在 CS2,CS3,CS4上,完成恢复后,CS2上的copyset1,2,3迁移到CS1上 ① CS1换了新盘,并重新格式化后启动chunkserver0 码力 | 29 页 | 1.61 MB | 6 月前3
共 20 条
- 1
- 2













