Curve 分布式存储设计Curve 分布式存储设计 程义 — Curve Maintainer XAgenda 第二 第三 第四 第一 Curve的由来 Curve的设计目标 Curve块存储 和 Curve文件存储 Curve社区Curve的由来 1. 代码复杂/代码量大 2. 运维难度高 3. 无法满足高的性能需求Curve的设计目标 1. Curve云原生软件定义存储 2. Curve块存储 高性能,易运维,云原生Curve块存储 1. 高性能分布式共享数据库场景 2. Curve块存储提供底层分布式共享存储 3. Polardb for PostgreSQL提供上层高性能数 据库服务 4. 性能测试 1. benchmarkSQL 每分钟事务数提升39% 2. pgbench 延迟降低21% TPS提升26% 研究现状Curve块存储 1. 分布式块存储服务 2. KVM块存储服务 快速跨云弹性发布的业务 3. 低成本大容量需求的业务 4. 中间件冷热数据自动分离 5. S3和POSIX统一访问需求 主要挑战和支持场景Curve Roadmap 1. 架构 1. 文件存储支持分布式缓存、完善冷热数据分层存储能力 2. 完善混合云、公有云上部署架构 3. 完善高性能3副本存储引擎,支持混合盘 4. 文件存储支持数据存储到HDFS、rados等引擎 2. 性能 1. 完善RDMA/SPDK方案,发布稳定版本0 码力 | 20 页 | 4.13 MB | 6 月前3
新一代云原生分布式存储新一代云原生分布式存储—Curve 上 李小翠 网易数帆存储团队分布式存储介绍 01 存储的发展 | 分布式存储的分类 | 分布式存储的要素 02 03 04 Ceph 架构简介 | 场景介绍 | 使用中的问题 Curve 架构简介 | 数据对比 | 应用情况 FAQ 答疑存储的发展 互联网时代,数据大爆炸 大型主机 成本高 单点问题 扩容困难 各存储设备通过网络互联 各存储设备通过网络互联 大规模 弹性扩容 底层构建在分布式存储之上 云的概念 成本:共用基础设施 弹性:随意扩缩容 速度:更快的构建发布业务 底层构建在分布式存储之上 云原生的概念: 易用性:跨平台,超融合,弹性 小型主机 容量有限分布式存储的分类 按照各种应用场景所需的存储接口分类 对象 存储 文件 存储 块存储 接口为简单的 Get、PUT、DEL 和其他扩展 对指定地址空间进行随机读写 传统意义的块存储:磁盘分布式存储的要素 如何构建分布式文件系统? 以分布式块存储为例。 •提供大容量的块设备 •可以在指定地址空间内随机读写 write(offset, len) •服务质量要求:数据不能丢、服务随时可用、弹性扩缩容 要什么 •成百上千台存储节点 •磁盘故障、机器故障、网络故障概率性发生 有什么 分布式存储系统需要满足接口需求,并且有持续监控、错误检测、容错与自动恢复的能力0 码力 | 29 页 | 2.46 MB | 6 月前3
Curve文件系统元数据持久化方案设计,需要独立的 snapshot(目前 redis 做不到)探索其可行性?? rocksdb/leveldb + multiraft 可行,因为 leveldb 是可嵌入的,一个 raft 实例中可以绑定一个 leveldb 实例(leveldb 中的 wal 和 SST 文件都可以写到指定的目录) redis 改造 vs 自己实现? 结论:从目前元数据持久化的需要来看,更倾向于自己实现,理由如下: 中哈希表实现的优点? 主要是当哈希表需要扩桶的时候,rehash 过程中 redis 采用了均摊/渐进式的思想,把 rehash 中的性能损耗均摊在每一次 SET/DEL 操作中(如 rehash 总耗时 1 秒,均摊给 100 个请求,那么每个请求只增加延时 10 毫秒),rehash 过程如下: 哈希表渐进式 rehash 的详细步骤: (1) 为 ht[1] 分配空间, 让字典同时持有 ht[0] rehash 至 ht[1], 这时程序将 rehashidx 属性的值设为 -1, 表示 rehash 操作已完成 哈希表渐进式 rehash 执行期间的哈希表操作: 因为在进行渐进式 rehash 的过程中, 字典会同时使用 ht[0] 和 ht[1] 两个哈希表, 所以在渐进式 rehash 进行期间, 字典的删除 (delete)、查找(find)、更新(update) 等操作会在两个哈希表上进行:0 码力 | 12 页 | 384.47 KB | 6 月前3
CurveFs 用户权限系统调研检查之外,内核还会进行检查,并且两者都必须成功才能允许操作 。 。 。 内核执行标准的 UNIX 权限检查 如果文件系统在打开设备 fd 时的初始功能协商期间启用了 ACL 支持,则此挂载选项将被隐式激活。 在这种情况下,内核执行 ACL 和标准的 unix 权限检查 疑问:协商期间do_init()中的启用ACL的flags如何设置? 初始化时的 通过 : 功能协商 init()函数实现©0 码力 | 33 页 | 732.13 KB | 6 月前3
Curve质量监控与运维 - 网易数帆秦 亦 1/33背景 01 02 03 04 Curve质量控制 Curve监控体系 Curve运维体系Curve 是网易针对块存储、对象存储、云原生数据库、EC等 多种场景自研的分布式存储系统: 高性能、低延迟 当前实现了高性能块存储,对接OpenStack和 K8s 网易内部线上无故障稳定运行近两年 已完整开源 • github主页: https://opencurve https://opencurve.github.io/ • github代码仓库: https://github.com/opencurve/curve Curve 3/33为用户服务 作为一个复杂的大型分布式存储系统,Curve 需要利用科学的方法论和专业的工具,在整个 软件生命周期内更好地为用户服务: 质量——向用户交付稳定可靠的软件; 监控——直观地展示Curve运行状态; 运维——保障Curve始终稳定高效运行。 支持python关键字,灵活定义测试 完善的测试报告 完美兼容Jenkins ci 丰富的第三方库(ssh, paramiko, request等) 用例设计原则 无需绑定特定环境,“随意拉起” 配置化(测试环境、测试负载定义) 控制用例时间(考虑一些折中方案) Case独立性 Case通用性(兼顾curve、ceph等) Tag规范(优先级、版本、运行时间)0 码力 | 33 页 | 2.64 MB | 6 月前3
Curve核心组件之Client - 网易数帆C u r v e 核 心 组 件 之 C l i e n t 吴汉卿CURVE CURVE是高性能、高可用、高可靠的分布式存储系统 • 高性能、低延迟存储底座 • 可扩展存储场景:块存储、对象存储、云原生数据库、EC等 • 当前实现了高性能块存储,对接 OpenStack 和 k8s • 网易内部线上无故障稳定运行400+天 • 已开源 • github主页: https://opencurve 将请求发往leader节点CLIENT IO线程模型 用户线程 1. 用户调用接口,发起IO请求 2. AioWrite将请求封装成io task并放入任务队列 3. 放入任务队列后,异步请求发起成功,返回用户 IO拆分线程 4. 从任务队列取出任务后进行拆分 5. 拆分过程依赖元数据,可能会通过MDSClient向 MDS获取 6. 拆分成的子请求放入队列CLIENT IO线程模型 IO分发线程 70 码力 | 27 页 | 1.57 MB | 6 月前3
TGT服务器的优化的坑不够多。 • TCMU的用户态代码会受到框架约束,不够灵活。iSCSI target 服务器 • TGT(STGT) • 比较久的历史,原来叫STGT,后来改成TGT • 纯用户态,不与内核绑定 • 支持复杂的存储系统,例如ceph rbd, sheepdog, glfs • 纯C代码,外加一些脚本 • 完整的源代码和维护工具、手册 • 编写IO驱动比较容易,容易扩展支持新的存储系统 •0 码力 | 15 页 | 637.11 KB | 6 月前3
副本如何用CLup管理PolarDB注意创建PolarDB需要的阿里云环境创建PolarDB需要的阿里云环境 部署集把虚拟机打散到不通的物理机上创建PolarDB需要的阿里云环境 VIP的使用创建PolarDB需要的阿里云环境 把VIP绑定到多台数据库主机创建PolarDB需要的阿里云环境 创建虚拟机的时候选中的盘都不是共享盘,必须在创建完 虚拟机后,在单独添加共享盘创建PolarDB需要的阿里云环境 安装依赖包: * libaio0 码力 | 34 页 | 3.59 MB | 6 月前3
MySQL 兼容性可以做到什么程度阿里云数据库解决方案架构师为什么要兼容 MySQL 01 The longer you look back, the farther you can look forward.也从阿里巴巴的“去IOE”运动说起 业务驱动下的分布式技术实践之路 5月17日,支付宝最后一台小型 机下线标志去IOE落下帷幕 首次双十一大考卡顿半分钟后稳 定度过 7月,TDDL+AliSQL首次验证支 持核心库 无法弹性扩展 成本高 去 IOE 中间件只是起点,PolarDB-X 可能是离终点最近的那个 对近十年的探索以及五年的上云 经验进行重新思考,面向未来设 从运维视角实现计算存储一体化 计新架构 产品形态 基于MySQL XA实现分布式事务 基于外部组件进行扩容 支持扩容 分布式事务 一体化尝试 Review 2.0 开源 2016 2017 2018 2019 2020 2021 2021年10月20日,云栖大会宣 布开源 2020年5月,PolarDB-X 不同队列中事件之间的顺序 • 分布式事务完整性 • DDL 引起的多 Schema 版本问题 • 扩缩容引起的队列增减 ? Maxwell Debezium A: PolarDB-X 全局 Binlog:完全兼容 • 与 MySQL Binlog 体验完全一致 • 保障分布式事务完整性 • 透明:下游系统或工具改造成本为零 • 实现复杂度高 Q: 分布式数据库有哪些问题要考虑Demo0 码力 | 18 页 | 3.02 MB | 6 月前3
CurveFS方案设计要是适配云原生数据库的场景。当前Curve是实现了块存储,向上提供块设备服务,CurveFS会基于此实现。第一阶段的目标是实现 满足数据库场景的文件接口。 调研 开源fs 当前对已有的开源分布式文件系统进行了调研,主要包括系统架构,元数据内存结构,元数据持久化,调研文档如下: chubaofs: ChubaoFS© XXX Page 3 of 14 1. 2. 3. moosefs: 并对以上文件系统在相同环境进行了元数据节点性能测试: 。测试结果c开发的moosefs和fastcfs元数据性能远优于go开发的chubaofs和c开发的cephfs,理论上分析这个结果是合理的,分布式的元数据设 调研测试 计会涉及到多次rpc的交互。这里需要确认的一点是:我们需要怎样的元数据节点的性能? 可行性分析 方案对比 根据上述调研和测试结果,我们考虑了三种curvefs的元数据设计方案: 可用性足够,由于是 master-slave 的方式,master 以同步方式调用 slave,slave 在内存中也缓存了全部元数据信息 master-slave 多副本数据 CurveFS 分布式元数据设计 类似 chubaofs 的元数据设计方式,同样是采用 dentry,inode 两层映射关系,所有的元数据都缓存在内存中。元数据是分片的,使用 multi-raft 持久化元数据以及保证多副本数据一致性。基于这种方式开发:0 码力 | 14 页 | 619.32 KB | 6 月前3
共 22 条
- 1
- 2
- 3













