积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部系统运维(31)存储(31)

语言

全部中文(简体)(26)zh(2)JavaScript(1)西班牙语(1)zh-cn(1)

格式

全部PDF文档 PDF(31)
 
本次搜索耗时 0.012 秒,为您找到相关结果约 31 个.
  • 全部
  • 系统运维
  • 存储
  • 全部
  • 中文(简体)
  • zh
  • JavaScript
  • 西班牙语
  • zh-cn
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PolarDB开源生态介绍 - 杭州Meetup 2022.10.15

    PolarDB开源生态介绍 阿里云 digoal为什么开源是未来?阿里巴巴开源缩略图数据库开源大图PolarDB开源云原生分布式数据库家族 : 兼容MySQL&PostgreSQL用户 生态伙伴 人才 降本提效 团队成长 商业服务 用户合作 • 联合实验室 PolarDB云原生分布式开源数据库产品 高校合作 • 课程合作 • 科研项目合作 • 工作组 高校 协同育人、教学优化成果 峰会 • 大咖说.对话开源 • meetup • 荣誉墙 技能栏目: 3万/场 曝光流量 影响力栏目: up 500万/场 曝光流量 竞技栏目: 100万/场 曝光流量 • SIG • Issue 开源代码协作 • 理事会 • 人才发展委员会 • 技术委员会 开源社区治理 • 联合解决方案|产品 • OxM发型版 • 数据库管理产品 • 数据迁移、联邦产品 生态伙伴合作 高校合作 开源共建 社区运营 生态建设 获得生态 商业服务 使用开源 PolarDB 开源学习 开源共建 人才招聘 产品适配 OxM 源码兜底 技术领先 PolarDB开源生态 共建模式 国产化替代 应用软件 适配迁移 生态伙伴集成 • 云市场、云速搭 • 创新中心SaaS市场 • 云起实验室 接入云端销售 数据价值放大 • 基础设施 • 安全 • 管理维护 • 数据集成 • 开发协同
    0 码力 | 7 页 | 1.45 MB | 6 月前
    3
  • pdf文档 Curve元数据节点高可用

    © XXX Page 1 of 30 Curve元数据节点高可用© XXX Page 2 of 30 1. 需求 2. 技术选型 3. etcd clientv3的concurrency介绍 3.1 etcd clientV3的concurrency模块构成 3.2 Campaign的流程 3.2.1 代码流程说明 3.2.2 举例说明Campagin流程 3.3 Observe的流程 Etcd集群与MDS1(当前leader)出现网络分区 4.2.5.1 事件一先发生 4.2.5.2 事件二先发生 4.2.6 异常情况4:Etcd集群的follower节点异常 4.2.7 各情况汇总 1. 需求 mds是元数据节点,负责空间分配,集群状态监控,集群节点间的资源均衡等,mds故障可能会导致client端无法写入。 因此,mds需要做高可用。满足多个mds, 但同时只有一个mds节点提供服务,称该提供服务的 的就是zookeeper和etcd, 考虑当前系统中mds有两个外部依赖模块,一是mysql, 用于存储集群拓扑的相关信息;二是etcd,用于存储文件的元数据信息。而etcd可以用于实现mds高可用,没必要引入其他组件。 使用etcd实现元数据节点的leader主要依赖于它的两个核心机制: TTL和CAS。TTL(time to live)指的是给一个key设置一个有效期,到期后key会被自动删
    0 码力 | 30 页 | 2.42 MB | 6 月前
    3
  • pdf文档 Curve文件系统元数据管理

    of 24 Curve文件系统元数据管理(已实现)© XXX Page 2 of 24 1. 2. 3. 4. Inode 1、设计一个分布式文件系统需要考虑的点: 2、其他文件系统的调研总结 3、各内存结构体 4、curve文件系统的元数据内存组织 4.1 inode定义: 4.2 dentry的定义: 4.3 内存组织 5 元数据分片 5.1 分片方式一:in 1、设计一个分布式文件系统需要考虑的点: 文件系统的元数据是否全缓存? 元数据持久化在单独的元数据服务器上?在磁盘上?在volume上? inode+dentry方式?当前curve块存储的kv方式? 是否有单独的元数据管理服务器? 2、其他文件系统的调研总结 fs 中心化元数据 内存namespace元数据 内存空间分配元数据 元数据持久化 元数据扩展 小文件优化 空间管理单位 数据持久化 其他© XXX Page moosefs(mfs) 有元数据服务器 全内存 fsnode → hashtable(inode id) fsedge → hashtable (parent inode + name) 全内存 chunk → hashtable(chunk id) log + dump record 差 否 chunk 链式多副本 overwirte有数据不一致风险 chubaofs(cfs) 有元数据服务器 inode
    0 码力 | 24 页 | 204.67 KB | 6 月前
    3
  • pdf文档 Curve支持S3 数据缓存方案

    © XXX Page 1 of 9 Curve支持S3 数据缓存方案© XXX Page 2 of 9 版本 时间 修改者 修改内容 1.0 2021/8/18 胡遥 初稿 背景 整体设计 元数据采用2层索引 对象名设计 读写缓存分离 缓存层级 对外接口 后台刷数据线程 本地磁盘缓存 关键数据结构 详细设计 Write流程 Read流程 ReleaseCache流程 基于s3的daemon版本基于基本的性能测试发现性能非常差。具体数据如下: 通过日志初步分析有2点原因© XXX Page 3 of 9 1.append接口目前采用先从s3 get,在内存中合并完后再put的方式,对s3操作过多 2.对于4k 小io每次都要和s3交互,导致性能非常差。 因此需要通过Cache模块解决以上2个问题。 整体设计 整个dataCache的设计思路,在写场景下能将数据尽可能的合并后flush到s3 读场景上,能够预读1个block大小,减少顺序读对于底层s3的访问频次。从这个思路上该缓存方案主要针对的场景是顺序写和顺序 读,而对于随机写和随机读来说也会有一定性能提升,但效果可能不会太好。 元数据采用2层索引 由于chunk大小是固定的(默认64M),所以Inode中采用map s3ChunkInfoMap用于保存对象存储的位置信息。采用2
    0 码力 | 9 页 | 179.72 KB | 6 月前
    3
  • pdf文档 Curve文件系统元数据Proto(接口定义)

    © XXX Page 1 of 15 curve文件系统元数据proto(代码接口定义,已实现)© XXX Page 2 of 15 1、代码结构和代码目录 curve文件系统是相对于curve块设备比较独立的一块,在当前curve项目的目录下,增加一个一级目录curvefs,curvefs下有自己独立的proto\src\test。 2、文件系统proto定义 2.1 mds.proto
    0 码力 | 15 页 | 80.33 KB | 6 月前
    3
  • pdf文档 CurveFS S3数据整理(合并碎片、清理冗余)

    1 of 3 curvefs s3数据整理(合并碎片、清理冗余)© XXX Page 2 of 3 1. 2. 3. 1. 2. 3. 4. 5. 6. 1. 2. 背景 只考虑单客户端, 单metaserver 为了解决的问题: 客户端在对一个文件的某个部分多次写入后, 同一个chunk会产生很多版本数据; 而客户端在读的时候, 会需要对这些chunk进行筛选和构建 会需要对这些chunk进行筛选和构建, 得到有效的部分, 越是散乱的状态, 就越需要发送更多次读请求至s3. 最后导致无效旧数据的堆积和读请求性能的下降, 所以需要在合适的时候进行重叠元数据和数据的合并 原则是尽力而为, 并不能做到完美 方案 基于一下3个基础的数据结构, 2层索引 s3chuninfolist[index] = [s3chunkinfo(s)] s3chunkinfo { } s3 object命名: chunkid_version_index (index为obj在chunk内的index) 执行步骤 数据整理作为一个后台服务(线程池), 运行于metaserver, 遍历metaserver的inode进行数据整理的尝试, 入队inodekey, 如果是已有inode任务, enqueue直接返回, 不入队 任务开始执行, 尝试根据inodekey获取inode信息
    0 码力 | 3 页 | 101.58 KB | 6 月前
    3
  • pdf文档 Curve文件系统元数据持久化方案设计

    © XXX Page 1 of 12 元数据持久化© XXX Page 2 of 12 前言 Raft Log Raft Snapshot 持久化文件 key_value_pairs 其他说明 实现 1、inode、entry 的编码 2、KVStore Q&A 单靠 redis 的 AOF 机制能否保证数据不丢失? redis 的高可用、高可扩方案? redis + muliraft 存在的问题? redis 改造 vs 自己实现? redis 中哈希表实现的优点? 参考 前言 根据之前讨论的结果,元数据节点的架构如下图所示,这里涉及到两部分需要持久化/编码的内容: Raft Log:记录 operator log Raft Snapshot:将内存中的数据结构以特定格式 dump 到文件进行持久化© XXX Page 3 of 12 Raft Log +------+- -----------+---------+ 持久化文件 字段 字节数 说明 CURVEFS 7 magic number(常量字符 "CURVEFS"),用于标识该文件为 curvefs 元数据持久化文件 version 4 文件版本号(当文件格式变化时,可以 100% 向后兼容加载旧版持久化文件) size 8 键值对数量 key_value_pairs / 键值对(当 size 为
    0 码力 | 12 页 | 384.47 KB | 6 月前
    3
  • pdf文档 Raft在Curve存储中的工程实践

    算力平台kubernetes的迅速发展 • AI/大数据业务的快速增长 • 存储使用Ceph文件存储/HDFS • 成本/性能挑战 Curve块存储和文件存储均采用raft协议整体架构 • 对接OpenStack平台为云主机提供高性能块 存储服务 • 对接Kubernetes为其提供RWO、RWX等类 型的持久化存储卷 • 对接PolarFS作为云原生数据库的高性能存储 底座,完美支持云原生数据库的存算分离架 构 Curve作为云存储中间件使用S3兼容的对象 存储作为数据存储引擎,为公有云用户提供 高性价比的共享文件存储 • 支持在物理机上挂载使用块设备或FUSE文件 系统开源社区 社区运营 生态共建 开源共建 源码兜底 技术领先 目标 方法 影响力 降本 获客 用户 开发者 操作系统 芯片 数据库 云原生 AI训练 大数据 社区生态Curve介绍 01 02 raft和braft mds:保存元数据,包括topo信息、块设备信息、 数据分布信息等,持久化到etcd中。 • chunkserver:采用raft协议3副本的方式保存块 设备上的数据。 • snapshotCloneServer:卷的快照克隆服务,持久 化到S3中。Curve块存储RAFT应用 数据分布 • 每个raft实例用一个copyset管理,copyset是个逻辑 概念。写入chunk的数据,由copyset对应的raft完成
    0 码力 | 29 页 | 2.20 MB | 6 月前
    3
  • pdf文档 MySQL 兼容性可以做到什么程度

    PolarDB-X 如 何 做 生 态兼 容 好的 MySQL 兼容性可以做到什么程度 胡中泉(舟济) 阿里云数据库解决方案架构师为什么要兼容 MySQL 01 The longer you look back, the farther you can look forward.也从阿里巴巴的“去IOE”运动说起 业务驱动下的分布式技术实践之路 5月17日,支付宝最后一台小型 机下线标志去IOE落下帷幕 a duck, and quacks like a duck, then it probably is a duck.业务系统 上游 Single Source of Truth 问题背景 数据孤岛怎么办? 下游MySQL 怎么做 Binlog Maxwell DebeziumPolarDB-X 完全兼容 MySQL Binlog 可行性 • 多节点产生多个增量事件队列 • 不同队列中事件之间的顺序 体验完全一致 • 保障分布式事务完整性 • 透明:下游系统或工具改造成本为零 • 实现复杂度高 Q: 分布式数据库有哪些问题要考虑Demo for Global Binlog with Flink CDCPolarDB-X Global Binlog 特性详情 提供与 MySQL 生态下游透明对接能力 产品体验 • 与 MySQL Binlog 完全一致体验 • 文件格式兼容:Binlog
    0 码力 | 18 页 | 3.02 MB | 6 月前
    3
  • pdf文档 Curve质量监控与运维 - 网易数帆

    质 量 、 监 控 与 运 维 秦 亦 1/33背景 01 02 03 04 Curve质量控制 Curve监控体系 Curve运维体系Curve 是网易针对块存储、对象存储、云原生数据库、EC等 多种场景自研的分布式存储系统:  高性能、低延迟  当前实现了高性能块存储,对接OpenStack和 K8s  网易内部线上无故障稳定运行近两年  已完整开源 • github主页: 要设计 文档:  小需求(改动小)将实现思路记录到任务管理系统中(JIRA),即可进行开发;  大需求(新模块、复杂功能)需要输出独立设计文档,并进行评审;对于功能或 性能影响较大的功能,还需要进行POC验证;评审和验证通过后才能启动开发 工作。 小需求 实现思路 开发 大需求 设计文档 POC 开发 7/33设计文档规范 设计文档需要具备以下内容:  修订记录  审批记录 审批记录  系统介绍  相关调研  架构  重要流程  关键算法  接口  数据库设计  非功能特性设计  参考文献 8/33代码编写规范 Curve代码编写规范遵循Google Style Guides(https://google.github.io/styleguide/) 9/33新代码提交 Dailybuild测试 提交issue 开发设计 提交PR
    0 码力 | 33 页 | 2.64 MB | 6 月前
    3
共 31 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
PolarDB开源生态介绍杭州Meetup2022.1015Curve数据节点可用文件系统文件系统管理数据管理支持S3缓存方案Proto接口定义接口定义CurveFS整理合并碎片清理冗余持久设计方案设计Raft存储工程实践MySQL兼容容性兼容性可以做到什么程度质量监控运维网易数帆
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩