积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部系统运维(23)存储(23)

语言

全部中文(简体)(18)zh(2)JavaScript(1)西班牙语(1)zh-cn(1)

格式

全部PDF文档 PDF(23)
 
本次搜索耗时 0.013 秒,为您找到相关结果约 23 个.
  • 全部
  • 系统运维
  • 存储
  • 全部
  • 中文(简体)
  • zh
  • JavaScript
  • 西班牙语
  • zh-cn
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 副本如何用CLup管理PolarDB

    如何用CLup管理Polardb 4008878716 services@csudata.com http://www.csudata.com 中启乘数科技 @http://www.csudata.com │中启乘数科技(杭州)有限公司 数据赋能│价值创新 关于我 《PostgreSQL修炼之道:从小工到专家》的作者,中 启乘数科技联合创始人,PostgreSQL中国用户会常委。 从 @ 专业的PostgreSQL数据库管理平台 CLup介绍CLup产品介绍 网络 clup-agent 数据库主机1 clup-agent 数据库主机2 clup-agent 数据库主机n  CLup是什么?  实现PostgreSQL/PolarDB数据库的私有云 RDS产品  PostgreSQL/PolarDB集群统一管理、统一运 维。  PostgreS 实现对PostgreSQL/PolarDB的监控管理  对PostgreSQL/PolarDB的TopSQL的管理  架构说明  有一台机器上部署的CLup管理节点,这个管 理节点提供WEB管理界面统一管理所有的 PostgreSQL/PolarDB数据库。  每台数据库主机上部署clup-agent。CLup管 理节点通过clup-agent来管理这台机器上的 PostgreSQL/PolarDB数据库。
    0 码力 | 34 页 | 3.59 MB | 6 月前
    3
  • pdf文档 Curve文件系统元数据管理

    © XXX Page 1 of 24 Curve文件系统元数据管理(已实现)© XXX Page 2 of 24 1. 2. 3. 4. Inode 1、设计一个分布式文件系统需要考虑的点: 2、其他文件系统的调研总结 3、各内存结构体 4、curve文件系统的元数据内存组织 4.1 inode定义: 4.2 dentry的定义: 4.3 内存组织 5 元数据分片 hardlink:生成一个hardlink /B/E,指向文件/A/C 6、curve文件系统的多文件系统的设计 1、设计一个分布式文件系统需要考虑的点: 文件系统的元数据是否全缓存? 元数据持久化在单独的元数据服务器上?在磁盘上?在volume上? inode+dentry方式?当前curve块存储的kv方式? 是否有单独的元数据管理服务器? 2、其他文件系统的调研总结 fs 中心化元数据 内存namespace元数据 内存namespace元数据 内存空间分配元数据 元数据持久化 元数据扩展 小文件优化 空间管理单位 数据持久化 其他© XXX Page 3 of 24 moosefs(mfs) 有元数据服务器 全内存 fsnode → hashtable(inode id) fsedge → hashtable (parent inode + name) 全内存 chunk → hashtable(chunk
    0 码力 | 24 页 | 204.67 KB | 6 月前
    3
  • pdf文档 CurveFS方案设计

    性能对比 可行性分析 方案对比 对比结论 架构设计 卷和文件系统 元数据架构 文件系统快照 方案一:文件/目录级别快照 方案二:文件系统快照 关键点 元数据设计 数据结构 索引设计 文件空间管理 开发计划及安排 背景 为更好的支持云原生的场景,Curve需要支持高性能通用文件系统,其中高性能主要是适配云原生数据库的场景。当前Curve是实现了块存储,向上提供块设备服务,CurveFS会基于此实现。第一阶段的目标是实现 kv方案设计 curve实现块设备时,元数据不是扁平化的设计,而是采用来有目录层级的 namespace 方式,namespace 已经实现了 fs 元数据管理的雏形,具备了基本的元数据管理功能。(当时为什么要设计为 namespace 的管理形式?留有租户这个概念),直接基于 namespace 开发: a. 功能 软/硬链接:目前是都不支持的。软链接可以通过标识文件类型解决;由于 prefix slave,slave 在内存中也缓存了全部元数据信息 master-slave 多副本数据 CurveFS 分布式元数据设计 类似 chubaofs 的元数据设计方式,同样是采用 dentry,inode 两层映射关系,所有的元数据都缓存在内存中。元数据是分片的,使用 multi-raft 持久化元数据以及保证多副本数据一致性。基于这种方式开发: a. 性能 由于元数据分片,获取元数据
    0 码力 | 14 页 | 619.32 KB | 6 月前
    3
  • pdf文档 Curve核心组件之mds – 网易数帆

    和 K8s 网易内部线上无故障稳定运行一年多 • 已开源 • github主页: https://opencurve.github.io/ • github代码仓库: https://github.com/opencurve/curve 概述整体架构 01 02 03 MDS各组件详细介绍 Q&A基本架构 • 元数据节点 MDS 管理元数据信息 收集集群状态信息,自动调度 • • 客户端 Client 对元数据增删改查 对数据增删改查 • 快照克隆服务器MDS各个组件 MDS是中心节点,负责元数据管理、集群状态收集与调度。MDS包含以下几个部分: • Topology: 管理集群的 topo 元数据信息。 • Nameserver: 管理文件的元数据信息。 • Copyset: 副本放置策略。 • Heartbeat: 心跳模块。跟chunkserver进行 心跳模块。跟chunkserver进行交互,收集chunkserver上的负载信息、 copyset信息等。 • Scheduler: 调度模块。用于自动容错和负载均衡。TOPOLOGY topology用于管理和组织机器,利用底层机器的放置、网络的规划以面向业务提供如下功能和非功能需求。 1. 故障域的隔离:比如副本的放置分布在不同机器,不同机架,或是不同的交换机下面。 2. 隔离和共享:不同用户的数据可以实现固定物理资源的隔离和共享。
    0 码力 | 23 页 | 1.74 MB | 6 月前
    3
  • pdf文档 CurveFs 用户权限系统调研

    问题2:本地文件系统挂载默认是共享的? 问题3:文件系统访问控制是在哪一层实现的? 二、文件系统权限管理 文件类型 文件权限 特殊权限(SUID, SGID, STICKY) 文件默认权限umask 用户&用户组 文件系统用户权限管理 对mode的管理 对ACL(Access Control Lists)的管理 ACL Access Entry保存在哪? ACL的表示 内存中的ACL 是如何与具体的 结论:fuse挂载时使用'default_permissions' 和 ‘allow_other’ ;或者可以在用户态文件系统中自由的实现访问控制策略。 可以达到共享文件系统下的基于内核权限检查的文件访问控制 二、文件系统权限管理© XXX Page 16 of 33 // example in linux // --------- drwxr-xr-x 3 wanghai01 neteaseusers 4096 Jul file2© XXX Page 18 of 33 STICKY: 仅设置在目录的其他用户权限位的执行权限上。如果在某个目录上的权限设置为多个用户都拥有写权限,那就意味着凡是拥有写权限的用户都能直接管理该目录中的所有文件名,包括改名文件及删除文 件名等操作;因此需要在这样的目录上设置STICKY特殊权限;如果此类目录设置了STICKY,则所有用户即便拥有写权限,也仅能删除或改名所有者为其自身的文件;
    0 码力 | 33 页 | 732.13 KB | 6 月前
    3
  • pdf文档 CurveFS Copyset与FS对应关系

    陈威 初稿 1.1 2021/8/4 陈威 根据评审意见修改 1.2 2021/8/9 陈威 增加详细设计 1、背景 2、chubaofs的元数据管理 2.1、meta partition的创建 2.2、meta partition的管理 2.3、meta partition和inode以及dentry的对应关系? 3、curvefs的copyset和fs的对应关系 3.1 如何获取inodeid 1 一台机器上能存放多少个inode和dentry 8.2 一台机器上建议的copyset数量 8.3 每个copyset建议管理存储容量的大小 1、背景 curvefs使用raft作为元数据一致性的保证。为了提高元数据的可扩展性和并发处理能力,采用元数据分片的方式管理inode和dentry的元数据。inode的分片依据是fsid + inodeid,dentry的分片依据是fsid + p parentinodeid。借鉴curve块设备的设计思路,(补充copyset的设计文档在这 ),curvefs的元数据分片仍然按照的copyset的方式去管理。 curve块存储的topo信息由PhysicalPool、LogicalPool、Zone、Server、ChunkServer、CopySetInfo组成。curvefs可以照搬curve块存储的topo设计,只是保存的内容从数据变成了元数据。
    0 码力 | 19 页 | 383.29 KB | 6 月前
    3
  • pdf文档 Curve设计要点

    是高性能、高可用、高可靠的分布式存储系统 • 高性能、低延迟 • 可支撑储场景:块存储、对象存储、云原生数据库、EC等 • 当前实现了高性能块存储,对接OpenStack和 K8s 网易内部线上无故障稳定运行一年多,线上异常演练 • 已开源 • github主页: https://opencurve.github.io/ • github代码仓库: https://github.com/opencurve/curve 03 04 总体设计 系统特性 近期规划基本架构 • 元数据节点 MDS 管理元数据信息 收集集群状态信息,自动调度基本架构 • 元数据节点 MDS 管理元数据信息 收集集群状态信息,自动调度 • 数据节点 Chunkserver 数据存储 数据一致性基本架构 • 元数据节点 MDS 管理元数据信息 收集集群状态信息,自动调度 • 数据节点 Chunkserver 数据存储 地址空间到—>chunk: 1 : 1 • 采用append的方式写入数据组织形式 • AppendFile • 地址空间到—>chunk: 1 : 1 • 采用append的方式写入 • 支撑多副本对象存储 通过文件/特殊目录隔离 挖洞即时回收 单独的元信息的存储方案数据组织形式 • AppendECFile • 地址空间到—>chunk: 1 : 1 • 数据chunk + 校验chunk数据组织形式
    0 码力 | 35 页 | 2.03 MB | 6 月前
    3
  • pdf文档 TGT服务器的优化

    --op update --tid 1 --lun 1 --params disksize=auto • Initiator 重新发送SCSI READ CAPACITY命令 • Windows 磁盘管理器refresh • Linux open-iscsi, iscsiadm --mode node -RDPO & FUA • DPO是disable page out的缩写,FUA是force unit 这个对于curve驱动,Linux Initiator的dmesg不会显示这个信息TGT的性能问题 • 性能问题主要体现在不能有效使用多CPU • 对多个socket connection,在单线程里做event loop多路复用。 • 多个target时,如果挂的设备多,一旦客户端请求量大,就会忙不过来。 • 开源界有尝试修改 • 例如sheepdog的开发者提交过一个patch,但是测试效果不理想,分析 IO是使用多个epoll 线程,充分发挥多CPU能力 • 当前策略是每个target一个epoll线程,负责Initiator发过来的I/O • 好处是各target上的CPU使用由OS负责分配,CPU分配粒度更细 • 也可以多个卷的lun都分配到一个target上,这样多个卷共享一个target, 限制使用一个CPU。 • 管理平面不变。主线程里的事件循环及问题: 管理面是主线程,登录,增、删、改target
    0 码力 | 15 页 | 637.11 KB | 6 月前
    3
  • pdf文档 Curve质量监控与运维 - 网易数帆

    监控——直观地展示Curve运行状态;  运维——保障Curve始终稳定高效运行。 质量 ✓ 质量管理体系(设计、开发、review、CI) ✓ 测试方法论(单元测试、集成测试、系统测试) 监控 ✓ 监控架构 ✓ 指标采集、后端处理、可视化展示 运维 ✓ 运维特性 (易部署、易升级、自治) ✓ 运维工具(部署工具、管理工具) 4/33背景 01 02 03 04 Curve质量控制 Curve监控体系 流程中。 设计  设计流程  文档规范 开发  编码规范与提交流程  版本管理 测试  测试方法论  CI与异常测试 6/33设计流程 Curve团队采用敏捷开发模式,负责人在制定迭代计划时,确认哪些任务需要设计 文档:  小需求(改动小)将实现思路记录到任务管理系统中(JIRA),即可进行开发;  大需求(新模块、复杂功能)需要输出独立设计文档,并进行评审;对于功能或 CI测试基础上增加了异常自动化测试 和混沌测试,确保master分支代码的 bug尽可能早地暴露出来。 通过这种流程,curve可以在一定 程度上保证master分支的稳定性。 master 10/33版本管理 Curve版本命名规则是x.y.z{-后缀}  x为主版本号,每次发布大版本时递增; 大版本一般半年发布一次。  y为次版本号,每次发布小版本时递增; 小版本一般1~2个月发布一次。
    0 码力 | 33 页 | 2.64 MB | 6 月前
    3
  • pdf文档 Raft在Curve存储中的工程实践

    成为领导者。 • Follower: 响应来自其他服务器的请求,如果接受不 到消息,就变成候选人并发起一次选举。 • 时间被划分成一个个的任期,每个任期开始都是一次 选举。 • 选举成功,领导⼈会管理整个集群直到任期结束。 • 选举失败,这个任期就会没有领导⼈⽽结束。 raft选举leader raft任期RAFT协议简介 raft复制状态机 1. leader收到客户端的请求。 2 采用快照的方式压缩日志 • 在某个时间点,整个系统的状态都以快照的形式写入 到稳定的持久化存储中 • 完成一次快照之后,删除时间点之前的所有日志和快 照。BRAFT简介 • raft协议提出之后,涌现出了非常多的实现,比如etcd,braft,tikv等。 • braft是raft的一个实现,实现了raft的一致性协议和复制状态机,而且提供了一种通用的基础库。基 于braft,可以基于自己的业务逻辑构建自己的分布式系统。 服务,持久 化到S3中。Curve块存储RAFT应用 数据分布 • 每个raft实例用一个copyset管理,copyset是个逻辑 概念。写入chunk的数据,由copyset对应的raft完成 3副本的写入。 • multi-raft:copyset和chunkserver是多对多的关系 • 每个copyset由3个chunkserver组成 • 每个chunkserver可以服务多个copyset
    0 码力 | 29 页 | 2.20 MB | 6 月前
    3
共 23 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
副本如何CLup管理PolarDBCurve文件系统文件系统数据数据管理CurveFS方案设计方案设计核心组件mds网易数帆CurveFs用户权限调研CopysetFS对应关系要点TGT服务务器服务器优化质量监控运维Raft存储工程实践
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩