Curve支持S3 数据缓存方案© XXX Page 1 of 9 Curve支持S3 数据缓存方案© XXX Page 2 of 9 版本 时间 修改者 修改内容 1.0 2021/8/18 胡遥 初稿 背景 整体设计 元数据采用2层索引 对象名设计 读写缓存分离 缓存层级 对外接口 后台刷数据线程 本地磁盘缓存 关键数据结构 详细设计 Write流程 Read流程 ReleaseCache流程 因此需要通过Cache模块解决以上2个问题。 整体设计 整个dataCache的设计思路,在写场景下能将数据尽可能的合并后flush到s3上,在读场景上,能够预读1个block大小,减少顺序读对于底层s3的访问频次。从这个思路上该缓存方案主要针对的场景是顺序写和顺序 读,而对于随机写和随机读来说也会有一定性能提升,但效果可能不会太好。 元数据采用2层索引 由于chunk大小是固定的(默认64M),所以Inode中采用map缓存分离 读写缓存的设计采用的是读写缓存分离的方案。 写缓存一旦flush即释放,读缓存采用可设置的策略进行淘汰(默认LRU),对于小io进行block级别的预读。 即读写缓存相互没影响不相关, 缓存层级 缓存层级分为fs->file->chunk->datacache 4层,通过inodeId找到f 0 码力 | 9 页 | 179.72 KB | 6 月前3
CurveFS S3本地缓存盘方案Page 1 of 9 Curvefs-S3 本地写缓存盘方案© XXX Page 2 of 9 背景 方案设计 主要数据结构定义 方案设计思考 POC验证 背景 当前,s3客户端在写底层存储的时候是直接写入远端对象存储,由于写远端时延相对会较高,所以为了提升性能,引入了写本地缓存盘方案。也即要写底层存储时,先把数据写到本地缓存硬盘,然后再把本地缓存 硬盘中的数据异步上传到远端对象存储。 方案设计© S3模块接收到写入后先写入写内存缓存页,如果满足持久化的条件后,那么则准备持久化。 如果未配置本地硬盘作为写缓存,那么直接持久化到远端的对象存储;如果配置了本地硬盘作为写缓存,那么则尝试先写入本地硬盘写缓存目录。 写本地硬盘缓存目录之前先判断缓存目录容量是否已达到阈值,如果已经达到阈值,那么则直接写入到远端对象存储;否则,则写入到本地硬盘写缓存目录中。文件写入本地硬盘写缓存目录后,从本地硬盘读目录© XXX Page 4 of 9 做一个硬链接链接到该文件。 本次io在本地硬盘写入好之后,异步上传模块会适时把本地硬盘写缓存目录中的文件上传到远端对象存储集群,上传成功后,删除本地写缓存目录中的对应文件。 同时,缓存清理模块会定时检查本地硬盘缓存目录容量情况,如果容量已经达到阈值了,则进行文件的清理工作。 另外,异常管理模块处理客户端挂掉后的文件重新上传问题。 主要数据结构定义 class0 码力 | 9 页 | 150.46 KB | 6 月前3
Curve 分布式存储设计Curve 分布式存储设计 程义 — Curve Maintainer XAgenda 第二 第三 第四 第一 Curve的由来 Curve的设计目标 Curve块存储 和 Curve文件存储 Curve社区Curve的由来 1. 代码复杂/代码量大 2. 运维难度高 3. 无法满足高的性能需求Curve的设计目标 1. Curve云原生软件定义存储 2. Curve块存储 高性能,易运维,云原生Curve块存储 1. 高性能分布式共享数据库场景 2. Curve块存储提供底层分布式共享存储 3. Polardb for PostgreSQL提供上层高性能数 据库服务 4. 性能测试 1. benchmarkSQL 每分钟事务数提升39% 2. pgbench 延迟降低21% TPS提升26% 研究现状Curve块存储 1. 分布式块存储服务 2. KVM块存储服务 快速跨云弹性发布的业务 3. 低成本大容量需求的业务 4. 中间件冷热数据自动分离 5. S3和POSIX统一访问需求 主要挑战和支持场景Curve Roadmap 1. 架构 1. 文件存储支持分布式缓存、完善冷热数据分层存储能力 2. 完善混合云、公有云上部署架构 3. 完善高性能3副本存储引擎,支持混合盘 4. 文件存储支持数据存储到HDFS、rados等引擎 2. 性能 1. 完善RDMA/SPDK方案,发布稳定版本0 码力 | 20 页 | 4.13 MB | 6 月前3
新一代云原生分布式存储新一代云原生分布式存储—Curve 上 李小翠 网易数帆存储团队分布式存储介绍 01 存储的发展 | 分布式存储的分类 | 分布式存储的要素 02 03 04 Ceph 架构简介 | 场景介绍 | 使用中的问题 Curve 架构简介 | 数据对比 | 应用情况 FAQ 答疑存储的发展 互联网时代,数据大爆炸 大型主机 成本高 单点问题 扩容困难 各存储设备通过网络互联 各存储设备通过网络互联 大规模 弹性扩容 底层构建在分布式存储之上 云的概念 成本:共用基础设施 弹性:随意扩缩容 速度:更快的构建发布业务 底层构建在分布式存储之上 云原生的概念: 易用性:跨平台,超融合,弹性 小型主机 容量有限分布式存储的分类 按照各种应用场景所需的存储接口分类 对象 存储 文件 存储 块存储 接口为简单的 Get、PUT、DEL 和其他扩展 对指定地址空间进行随机读写 传统意义的块存储:磁盘分布式存储的要素 如何构建分布式文件系统? 以分布式块存储为例。 •提供大容量的块设备 •可以在指定地址空间内随机读写 write(offset, len) •服务质量要求:数据不能丢、服务随时可用、弹性扩缩容 要什么 •成百上千台存储节点 •磁盘故障、机器故障、网络故障概率性发生 有什么 分布式存储系统需要满足接口需求,并且有持续监控、错误检测、容错与自动恢复的能力0 码力 | 29 页 | 2.46 MB | 6 月前3
CurveFS方案设计主要是适配云原生数据库的场景。当前Curve是实现了块存储,向上提供块设备服务,CurveFS会基于此实现。第一阶段的目标是实现 满足数据库场景的文件接口。 调研 开源fs 当前对已有的开源分布式文件系统进行了调研,主要包括系统架构,元数据内存结构,元数据持久化,调研文档如下: chubaofs: ChubaoFS© XXX Page 3 of 14 1. 2. 3. moosefs: 并对以上文件系统在相同环境进行了元数据节点性能测试: 。测试结果c开发的moosefs和fastcfs元数据性能远优于go开发的chubaofs和c开发的cephfs,理论上分析这个结果是合理的,分布式的元数据设 调研测试 计会涉及到多次rpc的交互。这里需要确认的一点是:我们需要怎样的元数据节点的性能? 可行性分析 方案对比 根据上述调研和测试结果,我们考虑了三种curvefs的元数据设计方案: 的元数据缓存使用的 lru cache,因此 list 只能依赖 etcd 的 range 获取方式。如果需要对 list 加速,需要新的缓存结构 c. 扩展性/可用性/可靠性 依赖于第三方kv存储,目前是etcd CurveFS 单机内存元数据设计 类似 fastcfs 和 moosefs 的元数据设计方式,采用通用的 dentry,inode 两层映射关系,所有的元数据都缓存在内存中,持久化在0 码力 | 14 页 | 619.32 KB | 6 月前3
Curve文件系统元数据管理© XXX Page 1 of 24 Curve文件系统元数据管理(已实现)© XXX Page 2 of 24 1. 2. 3. 4. Inode 1、设计一个分布式文件系统需要考虑的点: 2、其他文件系统的调研总结 3、各内存结构体 4、curve文件系统的元数据内存组织 4.1 inode定义: 4.2 dentry的定义: 4.3 内存组织 5 元数据分片 rename:rename /A/C到/B/E hardlink:生成一个hardlink /B/E,指向文件/A/C 6、curve文件系统的多文件系统的设计 1、设计一个分布式文件系统需要考虑的点: 文件系统的元数据是否全缓存? 元数据持久化在单独的元数据服务器上?在磁盘上?在volume上? inode+dentry方式?当前curve块存储的kv方式? 是否有单独的元数据管理服务器? 无中心化服务器 dht算法 hash 扩展时大量迁移 client缓存 inode→ hashtable(gfid) dentry→ hashtable(name) inode扩展属性字段 和写数据一样 好 写多份 overwirte有数据不一致风险 curve 有元数据服务器 lru cache缓存 kv → hashtable(key parent inode + name)0 码力 | 24 页 | 204.67 KB | 6 月前3
CurveFS Client 概要设计CurveFS client 向上提供两层接口,分别是© XXX Page 3 of 11 对接fuse,提供通用文件系统接口。对于fuse接口,先前进行了一些调研,见FUSE调研 提供lib库,提供对接分布式数据库接口,这一部分,可参考polarfs的接口,如下图所示。 根据讨论,我们首先对接fuse的lowlevel operators,对于数据库的lib库接口,后续可以在此基础上再做一层对接。lowlevel block),缓存到client端。 destroy void (*destroy) (void *userdata); 清理init缓存的文件系统信息。 lookup void (*lookup) (fuse_req_t req, fuse_ino_t parent, const char *name); 根据parent inode id和name从denty缓存中找到对应的denty结构; nty结构; 如果dentry缓存中不存在对应的inode,则从mds根据parent inode id获取parent inode 所在copyset,metaserver ip等信息 ,然后从metaserver获取denty(这里有两种方式,一种是只获取当前需要的 denty,一种是list整个目录的denty,这个需要考虑用哪个接口) 根据找到的denty结构,获取inodeid,设置0 码力 | 11 页 | 487.92 KB | 6 月前3
Raft在Curve存储中的工程实践01 02 raft和braft 03 raft在Curve中的应用 05 Q&A 04 Curve对raft的优化项目背景 Curve是一个 高性能、更稳定、易运维 的 云原生 分布式存储系统,支持 块存储 和 文件存储 2018~2021 Curve块存储 2021~2022 Curve文件存储 • 基于Openstack构建云计算平台 • 底层存储使用Ceph块存储 02 raft和braft 03 raft在Curve中的应用 05 Q&A 04 Curve对raft的优化RAFT协议简介 什么是raft • raft 是一种新型易于理解的分布式一致性复制协议,由斯坦福大学的Diego Ongaro和John Ousterhout提出,《In Search of an Understandable Consensus Algorithm(Extended Algorithm(Extended Version)》 • raft 是一种Leader-Based的Multi-Paxos变种,提供了更完整更清晰的协议描述,更容易理解和实现。 • raft可以解决分布式理论中的CP,即一致性和分区容忍性 • 大多数副本成功即可返回成功 • 速度取决于写的较快的大多数RAFT协议简介 • Leader:负责从客户端接受日志,把日志复制到其 他服务器,当保证安全性的时候告诉其他服务器应用0 码力 | 29 页 | 2.20 MB | 6 月前3
Open Flags 调研了兼容老版本的O_SYNC,现在O_SYNC=O_DSYNC|04000000)。 FASYNC: 异步的,启用signal-driven I/O。 : 直接I/O,执行磁盘I/O时绕过缓冲区高速缓存,从用户空间直接将数据传递到文件或磁盘设备。 O_DIRECT : 使得32位操作系统对大文件支持(_FILE_OFFSET_BITS=64)。 O_LARGEFILE : 以目录形式打开,如果 一般来说,当调用 open() 系统调用打开文件时,如果不指定 O_DIRECT 标志,那么就是使用缓存I/O来对文件进行读写操作。系统缓存位于VFS和真实文件系统之间,当虚拟文件系统读文件时,首先从缓存中查找要读取的文件内容是否存在缓存中,如果存在就直接从缓存中读取。对文 件进行写操作时也一样,首先写入到缓存中,然后由操作系统同步到块设备(如磁盘)中。对于通用块设备层来说要求io请求是块设备blocksize对齐的,对应buffered 同步I/O:强制刷新内核缓冲区到输出文件© XXX Page 21 of 23 对chubaofs和cephfs代码调研中发现在write中判断如果是直接IO则调用flush操作,但是对具体flush内容主要是对文件系统自己缓存的内容进行刷盘,没有发现对应内核缓冲区flush的相关设置或调用等。© XXX Page 22 of 23 // chubaofs writeflush func cfs_write(id C.int64_t0 码力 | 23 页 | 524.47 KB | 6 月前3
Curve核心组件之Client - 网易数帆C u r v e 核 心 组 件 之 C l i e n t 吴汉卿CURVE CURVE是高性能、高可用、高可靠的分布式存储系统 • 高性能、低延迟存储底座 • 可扩展存储场景:块存储、对象存储、云原生数据库、EC等 • 当前实现了高性能块存储,对接 OpenStack 和 k8s • 网易内部线上无故障稳定运行400+天 • 已开源 • github主页: https://opencurve FileInstance:对应一个已挂载的卷 LeaseExecutor:负责定期与MDS通信,获取卷的元数据信息 元数据信息在打快照时会进行变化 MetaCache:元数据缓存 IOTracker:跟踪一个上层IO请求 IOSplitor:IO转换拆分 ChunkClient、CliClient:与Chunkserver进行通信 前者负责IO请求 数据面:AioWrite/AioRead、Write/Read 控制面:Create/Delete、Open/Close、Rename等 IO处理:转换、拆分、合并 元数据获取及缓存 逻辑chunk与物理chunk映射关系 物理chunk所属的复制组(copyset) 复制组所在的chunkserver列表 复制组的leader信息 Failover支持0 码力 | 27 页 | 1.57 MB | 6 月前3
共 22 条
- 1
- 2
- 3













