积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(16)PieCloudDB(16)

语言

全部中文(简体)(16)

格式

全部PDF文档 PDF(16)
 
本次搜索耗时 0.014 秒,为您找到相关结果约 16 个.
  • 全部
  • 数据库
  • PieCloudDB
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PieCloudDB 的云原生之路

    池化资源,按需使用 基础软件尤其是数据平台上云已是大势所趋 用户专注于使用,运维等工作交给 IaaS/SaaS 厂商 IvorySQL开源数据库社区 上云≠云原生 弹性计算 智能化云原生平 台 多租户 • 产品要能支持存储资源和计算资源的分离 • 产品要能快速进行计算资源的弹性伸缩 IvorySQL开源数据库社区 我们需要一个云原生大数据平台 缺乏弹性 业务使用不灵活 成本高昂 离,同时具 备数据共享的能力。 例如:投资管理系统和财务管理系统可以各自管理,按需分享。 计算:云上计算资源可以弹性分配。有查询计算任务的时候按需启动, 按照使用时间和规模计算成本,而不是购买大量服务器静置为不确定 的使用额外支付成本。 发现:在云上,对计算模型以更低成本提供指数级的存储和计算资源, 帮助甲方的业务模型发现新洞察或者提高精准度,从而建立竞争壁垒。 1 2 3 产 PieCloudDB 技术突破:数仓虚拟化 云原生存算分离架构 运用元数据-计算-数据分离的三层架构,实现云上存储资源 与计算资源的独立管理。云上计算资源可弹性分配,有查询 计算任务的时候按需启动,按照使用时间和规模计算成本。 eMPP 分布式专利技术 在云上,PieCloudDB 利用 eMPP(elastic Massive Parallel Processing)架构,实现多集群并发执行任务。企
    0 码力 | 47 页 | 1.80 MB | 1 年前
    3
  • pdf文档 PieCloudDB:基于PostgreSQL的eMPP云原生数据库

    reserved. OpenPie Confidential 云解决了什么? 借助于云上分布式存储,解耦存储 借助于云上虚拟化技术和之上的IaaS,解耦计算 池化资源,按需使用 基础软件尤其是数据平台上云已是大势所趋 用户专注于使用,运维等工作交给IaaS/SaaS厂商 @2022 OpenPie. All rights reserved. OpenPie Confidential 上云 ≠ 云原生 产品要能快速进行计算资源的弹性伸缩 @2022 OpenPie. All rights reserved. OpenPie Confidential 我们需要一个云原生大数据平台 缺乏弹性 业务使用不灵活 成本高昂 集群固定,资源利用率低 木桶效应 扩容难 数据孤岛 元数据和用户数据跨集群 访问困难 运维成本 运维和DBA 传统分布式MPP架构痛点 @2022 OpenPie OpenPie Confidential 一个云原生实时大数据平台 平台底层:eMPP 云原生分布式SQL数据库 我们的目标:支持多模,serverless的实时大数据平台 关于PieCloudDB 使用简单 功能齐全 性能极致 安全可靠 @2022 OpenPie. All rights reserved. OpenPie Confidential PieCloudDB 重要特点 eMPP
    0 码力 | 45 页 | 1.32 MB | 1 年前
    3
  • pdf文档 PieCloudDB云原生数仓虚拟化之路

    reserved. OpenPie Confidential 云解决了什么? 借助于云上分布式存储,解耦存储 借助于云上虚拟化技术和之上的IaaS,解耦计算 池化资源,按需使用 基础软件尤其是数据平台上云已是大势所趋 用户专注于使用,运维等工作交给IaaS/SaaS厂商 @2022 OpenPie. All rights reserved. OpenPie Confidential 上云 ≠ 云原生 产品要能快速进行计算资源的弹性伸缩 @2022 OpenPie. All rights reserved. OpenPie Confidential 我们需要一个云原生大数据平台 缺乏弹性 业务使用不灵活 成本高昂 集群固定,资源利用率低 木桶效应 扩容难 数据孤岛 元数据和用户数据跨集群 访问困难 运维成本 运维和DBA 传统分布式MPP架构痛点 @2022 OpenPie Confidential mstore — FoundationDB上的Catalog 基于 MVCC 的事务隔离级别 将元组以 key-value 的形式存储 到 FoundationDB 使用 FoundationDB Key 的自然排序 实现索引 @2022 OpenPie. All rights reserved. OpenPie Confidential D a t a C o
    0 码力 | 44 页 | 1.64 MB | 1 年前
    3
  • pdf文档 πDataCS赋能工业软件创新与实践

    等都需要额外的组件,应对不同的场景需要安装对应的组件和依赖。 ⽣态丰富,对结构化数据、半结构化数据以及非结构化数据都支持,可以很好 的完成各种业务场景的数据处理需求。但是对于开发的要求比较⾼,需要掌握 多种组件的不同使用⽅法,业务开发周期会比较久。 国外开源软件,与国产软硬件兼容性差,不符合信创趋势,也⽆法直接利用云 资源的弹性能⼒。组件太多,导致集群部署和后期运维管理很麻烦,市场上相 关⼈才储备量不多,技术 灵活可扩展的插件式引擎,组件少⽽精(All in One),提供3种计算引擎、1种 Lakehouse引擎,1个硬件加速器,应对各种场景的计算,同时也兼容Spark、 Flink等计算任务,保留用户的使用习惯。 ⽣态完善,支持主流的开发语⾔和数据科学⼯具,支持多模数据处理(结构化、 半结构化以及非结构化),提供标准的SQL接⼝和API,完成各种复杂场景的数 据处理,业务开发周期短,现存的代码基本可以⽆缝迁移和复用。 突 破 : 数 仓 虚 拟 化 云原⽣存算分离架构 运用元数据-计算-数据分离的三层架构,实现云上存储资源与 计算资源的独立管理。云上计算资源可弹性分配,有查询计 算任务的时候按需启动,按照使用时间和规模计算成本。 eMPP分布式专利技术 在云上,PieCloudDB利用eMPP(elastic Massive Parallel Processing)架构,实现多集群并发执⾏任务。企业可灵活
    0 码力 | 36 页 | 4.25 MB | 1 年前
    3
  • pdf文档 PieCloudDB Database 产品白皮书

    录。数据计算时,所有机器同时并行计算,理论上最 把计算时间降低到单机部署的 1/n (n为机器数量) ,节省了海量数据的处理时间。 传统数据仓库架构 然而,随着数据量的不断尝升,企业对数据仓库的要求也越来越高,在使用过程中,传统 MPP 数据库解决方案迎来 了一系列的瓶颈: 传统数据仓库的计算和存情是| 容计算资源和存储资源,在扩缩容、运维、迁移上都存在一, 报表结! 传统数据仓库无法及时扩 导致大数据系统天 数仓,企业往往会需要配备运维人力,且对运维、开发人员要求高,需要相关人员掌握复杂的技术 栈,技术的更新迁代迅速,相关人员需保持积极的知识更新意识。根关人才市场较小,人才芽乏。高昂的学习成本造 成用户使用过程中性能差、故障率高、故障修复时间长等问题。 云时代的数据处理要求 随着数据量和计算能力的爆发式增长,云计算技术的迅猛发展,云原生架构愈受欢迎,云原生时代应运而生。云原生 时代,越来越多的企业 (弹性大规模并行计算) 的云原生虚拟数仓 产品白皮书 些优势使云原生数据库得以降低计算成本,提供无限丰富的计算资源,实现分钟级的伸缩性和真正的高可用,释放 出数据计算产生更多智能的机会。以下是云原生时代数字企业的典型使用场景 * 每天有数个小的计算任务,需要数个节点 * 每周有一个中等计算任务,需要数十个节点 * 每月有一个大的计算任务,需要数干个节点 面对这些不断变化的业务需求和计算任务,企业产生了更高的需求:
    0 码力 | 17 页 | 2.68 MB | 1 年前
    3
  • pdf文档 云原生虚拟数仓PieCloudDB Database产品白皮书

    年云数据库营收数据将占据数据 库整体市场的半数以上。 1 2 全 球 数 据 圈 预 测 IDC: 3 缺 乏 弹 性 然而,随着数据量的不断攀升,企业对数据仓库的要求也越来越高,在使用过程中,传统 MPP 数据库解决方案迎来 了一系列的瓶颈: 4 传统数仓的痛点 很多受欢迎的数据库仓库均为分布式数据库,而典型的传统分布式数据库系统大多是 MPP(大规模并行计算)架构。 数仓,企业往往会需要配备运维人力,且对运维、开发人员要求高,需要相关人员掌握复杂的技术 栈,技术的更新迭代迅速,相关人员需保持积极的知识更新意识。相关人才市场较小,人才匮乏。高昂的学习成本造 成用户使用过程中性能差、故障率高、故障修复时间长等问题。 5 云时代的数据处理要求 随着数据量和计算能力的爆发式增长,云计算技术的迅猛发展,云原生架构愈受欢迎,云原生时代应运而生。云原生 时代,越来越 灵活伸缩: 资源回收: 这些优势使云原生数据库得以降低计算成本,提供无限丰富的计算资源,实现分钟级的伸缩性和真正的高可用,释放 出数据计算产生更多智能的机会。以下是云原生时代数字企业的典型使用场景: 面对这些不断变化的业务需求和计算任务,企业产生了更高的需求: 充分结合云计算、大规模并行处理技术的云原生虚拟数仓 PieCloudDB 应运而生, PieCloudDB 帮助企业摆脱了
    0 码力 | 17 页 | 2.02 MB | 1 年前
    3
  • pdf文档 大模型时代下向量数据库的设计与应用

    行创新,全面拥抱AI技术趋势。 目录 • 大模型应用和RAG • 向量近似搜索和向量数据库 • PieCloudVector架构设计与挑战 • 案例介绍 大模型 检索增强生成(RAG) 使用大模型可以构造问答,聊天等应用,但同时也存在以下问题 • 数据时效 - LLM训练数据有截止日期,不包含最新信息,无法准确回答相关信息 • 私域数据 - LLM训练数据多来源于公开渠道,无法接触 PieCloudVector • 使用faiss开源算法库做为向量搜索引擎 • 支持主流的ann算法,如ivf和hnsw等 PieCloudVector • 使用faiss开源算法库做为向量搜索引擎 • 支持向量编码和压缩如PQ等 PieCloudVector • 使用faiss开源算法库做为向量搜索引擎 • 支持二进制索引 • 支持多级索引如HNSW+IVF等 • CPU多核并行/GPU加速 转换为调用自定义线程池和 lambda表达式 • 共享变量替换及并发保护 PieCloudVector • Faiss OpenMP线程改造 • 控制全局线程数 • 降低线程锁冲突 • 降低内存使用 PieCloudVector • Faiss OpenMP线程改造 • 避免无效线程 PieCloudVector • Faiss OpenMP线程改造 • QPS大幅提升 PieCloudVector
    0 码力 | 28 页 | 1.69 MB | 1 年前
    3
  • pdf文档 PieCloudDB Database V2.8 Release Note

    并共享给所有 Slices/Backends。 n 支持在 PieCloudDB 全局缓存系统中添加本地缓存。 l HLL(HyperLogLog)压缩 当 HLL 比较稀疏时支持使用游程编码,可以节省 60%-95% 的存储空间。 2 l 优化 Block Skipping 实现 JANM 的虚拟索引。对于某些特殊的访问方法,表的数据文件/块已经包 l 简墨 JAMN 相关优化 n 通过 Delte Encoding 优化 JAMN 文件存储空间。 n 支持指定 JAMN 文件数据压缩方法,包括 None、PGLZ 或者 ZSTD。使用 ZSTD 压缩方法可以大幅度提高数据文件压缩率,降低数据文件存储成本。 n 支持预聚集块扫描节点,对 JAMN 文件块中的数据进行预聚集计算。 n 增强 JANM Data Skipping block_file_size,设置生成新文件的 Block 文件大小限制, 以兆字节为单位。 n 新增建表选项 num_stat_col,控制文件内统计列数,为每个 JANM 文件 节省 CPU 和元数据大小。默认值为 32,与 INDEX_MAX_KEYS 相同。 3 l 外表 FDW 相关 n 新增 raw_fdw 外表接口,支持在协调节点和工作节点上执行,以原始字
    0 码力 | 4 页 | 144.49 KB | 1 年前
    3
  • pdf文档 PieCloudDB Database 社区版集群安装部署手册 V2.1

    PieCloudDB Database 社区版集群部署和使用手册 版本:V2.1 2023 年 03 月 08 日 目录 1. 集群规划 .......................................................................................................... .................................................................................... 28 4. 集群部署和使用 .................................................................................................. https 且有 cert 相关证书,可以用 docker pull 正常拉取 images,则可以不 用进行 docker 配置的修改,忽略此章节内容即可。 如果 harbor 仓库没有使用 https,使用的是 http,则需要添加如下的 docker 配置信息,用 root 用户在 master 节点执行如下命令: 1. vim /etc/docker/daemon.json ##修改
    0 码力 | 42 页 | 1.58 MB | 1 年前
    3
  • pdf文档 云原生虚拟数仓 PieCloudDB 的架构和关键模块实现

    Nosql对于复杂查询的支持差 NoSQL和数据湖很难胜任数据分析的工作场景 @2022 OpenPie. All rights reserved. OpenPie Confidential • 使用数据湖为基础进行数据分析需要多个组件进行集成部署,多个 组件的配合需要大量的开发工作 • 许多缺乏 ANSI SQL 支持,需要专门的技术技能 • 专用引擎/工具(例如图形数据库)通常难以与记录系统集成,限制 OpenPie Confidential @2022 OpenPie. All rights reserved. OpenPie Confidential • 在 AP 场景下,像使用 postgres 一样使用 PieCloudDB • 只为已经发生的计算和存储付费 • 按需启动的关闭多个不同大小的集群,以适应不同类型的任务 • 取得性能和开发效率的高度平衡 @2022 OpenPie OpenPie. All rights reserved. OpenPie Confidential • 将元组以key-value的形式存储到 FoundationDB • 使用原有的机制实现mvcc • 使用foundationdb key的自然排序实现index • Xmin:创建这个tuple的事务 id • Xmax:删除这个tuple的事务id • ctid:指向update的下一个tuple
    0 码力 | 43 页 | 1.14 MB | 1 年前
    3
共 16 条
  • 1
  • 2
前往
页
相关搜索词
PieCloudDB原生基于PostgreSQLeMPP数据据库数据库数仓虚拟虚拟化DataCS赋能工业软件创新实践Database产品白皮皮书白皮书模型时代向量设计应用V2ReleaseNote社区集群安装部署手册架构关键模块实现
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩