积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(19)PieCloudDB(19)

语言

全部中文(简体)(19)

格式

全部PDF文档 PDF(19)
 
本次搜索耗时 0.014 秒,为您找到相关结果约 19 个.
  • 全部
  • 数据库
  • PieCloudDB
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PostgreSQL 查询优化器解析

    0 码力 | 37 页 | 851.23 KB | 1 年前
    3
  • pdf文档 PieCloudDB Database 产品白皮书

    大的运维和时间成本,且操作繁 琐。 木桶效应 传统 MPP 数据仓库架构存在“木桶效应”,集群整体执行速度取决于最“短板的”节点的性能。因此,一个节点的 表现往往会 “拖幸”整个集群的性能,导致查询速度变慢。 随卷时间的推移,业务的增长,企业往往需要在1-2年后 对集群增加计算节点,此时,无论新的计算节点性能如何好,集群总体性能都会受制于老的节点。因此真实生产环境 中,常常见到客户在需要扩容时,采取重新新建集群的方式。 群并发、高可用以 及用户权限等功能; 2. 计算节点: 无状态节点 (包括 Coordinator 和 Executer) ,主要负责接收用户请求和数据计算,支持 动态弹性伸缩,提供数据查询 、执行计划、查询优化、数据加载、连接管理、并行计算以及资源隔离 等功能; 3. 存储节点; 存算分离架构,支持本地存储和云存储,推荐采用对象存储,提供数据压缩、数据加密、 多模存储以及多级缓存等功能; 4 采用高效并行的方式进行数据加载和处理,处理速度随节点增加而提升,支持流数据快速加载。 PieCloudDB 的eMPP (弹性大规模并行计算) 架构让数据计算可以自动化弹性伸缩,用户可以根据计算任务灵活的分 配最优数量的节点执行查询。同时PieCloudDB的多集群能力可轻松面对高并发场景,企业可以根据业务的并发需求动 态扩展 PieCloudDB 集群,满足业务应用的并发需求。 Openpie | PiecloudDB 基于eMPP
    0 码力 | 17 页 | 2.68 MB | 1 年前
    3
  • pdf文档 云原生虚拟数仓PieCloudDB Database产品白皮书

    成本,且操作繁 琐。 木 桶 效 应 传统 MPP 数据仓库架构存在“木桶效应”,集群整体执行速度取决于最“短板的”节点的性能。因此,一个节点的 表现往往会 “拖垮”整个集群的性能,导致查询速度变慢。 随着时间的推移,业务的增长,企业往往需要在1-2年后 对集群增加计算节点,此时,无论新的计算节点性能如何好,集群总体性能都会受制于老的节点。因此真实生产环境 中,常常见到客户在需要扩容时,采取重新新建集群的方式。 2. 计算节点: 无状态节点(包括 Coordinator 和 Executer),主要负责接收用户请求和数据计算,支持 动态弹性伸缩,提供数据查询、执行计划、查询优化、数据加载、连接管理、并行计算以及资源隔离 等功能; 3. 存储节点: 存算分离架构,支持本地存储和云存储,推荐采用对象存储,提供数据压缩、数据加密、 采用高效并行的方式进行数据加载和处理,处理速度随节点增加而提升,支持流数据快速加载。 PieCloudDB 的 eMPP(弹性大规模并行计算)架构让数据计算可以自动化弹性伸缩,用户可以根据计算任务灵活的分 配最优数量的节点执行查询。同时PieCloudDB的多集群能力可轻松面对高并发场景,企业可以根据业务的并发需求动 态扩展 PieCloudDB 集群,满足业务应用的并发需求。 8 原生多租户支持 人性化的管控平台
    0 码力 | 17 页 | 2.02 MB | 1 年前
    3
  • pdf文档 PieCloudDB Database 社区版集群安装部署手册 V2.1

    ........................................................................................ 35 4.5 查询计算 ................................................................................................ ...................................................................................... 38 4.6 评估查询表现 ................................................................................................ 可以点击 ,命名为“file1”,点击选择数据库 “postgres”、集群“cluster1”,就可以在界面上书写查询语句了。 例如,如果需要新建一个名为 “公司数据库” 的数据库,可以通过以下 “CREATE DATABASE” 语句来实现。 如需执行查询,点击 即可。 4. 创建完数据库后,可以点击菜单栏的 来查看所有数据库的详细信息,包含 schema、tables、views、functions
    0 码力 | 42 页 | 1.58 MB | 1 年前
    3
  • pdf文档 PieCloudDB Database V2.1 版本说明

    少连接操作需要处理的数据量,使得查询性能显著提升。 • 实现了 Block Skipping 的优化机制:数据库运行查询语句时,通过计算每个块 (block)中列聚集信息,在执行期间跳过非必要的数据块,减少数据读取量提高查询性 能。 • 极速 Analyze(Smart Analyze): PieCloudDB 实现极速 Analyze,更快的生 成精确的查询规划统计信息,从而在查询时可以生成更优的查询计划。 • 可观察性增强:可得到更多的查询时系统的统计信息,包括元数据管理、S3 等。 • Vacuum 优化:在元数据层通过快速过滤不需要 vacuum 的数据,从而实现 vacuum 加速。 • 存储引擎 简墨(JANM) 异常处理的优化: 避免各种异常情况下数据残留。 • 简墨(JANM)分布式处理增强:更高效的元数据采集和分发,提升用户查询响 应时间,降低系统负载 性能:此优化将动态的分配要 读取的文件给各个执行节点,降低查询的启动代价。 • 原生格式存储:在 HDFS/NAS 系统上支持原生存储格式。 • 对 Orca 的支持:PieCloudDB 支持查询优化器 Orca。Orca 是一款开源的、基 于 Cascades 模型的模块化查询优化器,帮助用户对 SQL 进行优化,生成高效的查询计 划。 • 支持超大数据量字段
    0 码力 | 3 页 | 257.15 KB | 1 年前
    3
  • pdf文档 云原生数据库 PieCloudDB eMPP架构设计与实现

    多个集群(虚拟数仓)可以共享⼀份元数据 • FoundationDB⾼可⽤设计、备份恢复保证元数据的可靠性和可 ⽤性 元数据管理缓存 • ⺫的: • 减轻FoundationDB集群负担 • 加速查询优化(⺴络延迟远⾼于内存延迟) • 以Postgres原⽣的元数据缓存概念为基础,优化重构实现适⽤于 多集群架构 ⽤户数据存储引擎 • PAX(⾏列混存)配以⾼效压缩 • Block⽂件为⼀个存储(MVCC)单位 Skipping (本地查询和远程读取) • 预聚集 • ...... 存储中⽴ • 公有云,私有云,混合云 • 对象存储 (数据共享,存算分离)按需付 费 • 也⽀持HDFS,NAS ⽤户数据可靠安全 • ⽤户数据⾼可靠实时加解密 (TDE) • 分布式对象存储多副本多可⽤区保证数据安全:“⼀份”数据, 避免数据不⼀致 • 将来Time Travel查询“回收站”数据 ⽤户数据查询效率优化 计算优化(各种功能特性持续优化中) • 很多复杂OLAP查询如果不是IO瓶颈,不会受制于它 • …... 计算引擎之优化器 PieCloudDB Optimizer 是⼀个基于eMPP架构的云原⽣分布式优化器,它 可以为海量数据集上的复杂OLAP查询提供最优的查询计划。 • 分布式优化器 • 处理复杂OLAP查询 • 云原生优化器 处理复杂OLAP查询 多表连接的最 优顺序搜索 多阶段聚集
    0 码力 | 31 页 | 1.43 MB | 1 年前
    3
  • pdf文档 πDataCS赋能工业软件创新与实践

    ,赋能⾏业AI场景应用。 具备整体数据平台⽅案,支持多模数据处理(结构化、半结构化 以及非结构化数据),实现数据共享和分析。 软件优化 + 新硬件(FPGA)加速,实现数据全链路的性能飞跃, 让数据存储、SQL查询、向量计算以及机器学习等能⼒全面升级。 @2024 OpenPie. All rights reserved. OpenPie Confidential • 全新云原⽣架构「⼀份数据,多引擎计算」 C l o u d D B 技 术 突 破 : 数 仓 虚 拟 化 云原⽣存算分离架构 运用元数据-计算-数据分离的三层架构,实现云上存储资源与 计算资源的独立管理。云上计算资源可弹性分配,有查询计 算任务的时候按需启动,按照使用时间和规模计算成本。 eMPP分布式专利技术 在云上,PieCloudDB利用eMPP(elastic Massive Parallel Processi ⾼效的⽂件格式,可在节省⽹络请求的同时提⾼计算效率。 全新的优化器「达奇」 PieCloudDB可以更智能⾼效地⽣成统计信息,并⽣成更⾼ 效的查询计划,达奇优化器支持聚集下推,预计算,Block Skipping等⾼级特性,全面满⾜各种复杂的分析查询需求。 @2024 OpenPie. All rights reserved. OpenPie Confidential eMPP分布式专利技术
    0 码力 | 36 页 | 4.25 MB | 1 年前
    3
  • pdf文档 PieCloudDB 的云原生之路

    数据 计算 发现 数据:云上数据既是隔离也是连通。从安全的角度是隔离,同时具 备数据共享的能力。 例如:投资管理系统和财务管理系统可以各自管理,按需分享。 计算:云上计算资源可以弹性分配。有查询计算任务的时候按需启动, 按照使用时间和规模计算成本,而不是购买大量服务器静置为不确定 的使用额外支付成本。 发现:在云上,对计算模型以更低成本提供指数级的存储和计算资源, 帮助甲方的业务模 IvorySQL开源数据库社区 PieCloudDB 技术突破:数仓虚拟化 云原生存算分离架构 运用元数据-计算-数据分离的三层架构,实现云上存储资源 与计算资源的独立管理。云上计算资源可弹性分配,有查询 计算任务的时候按需启动,按照使用时间和规模计算成本。 eMPP 分布式专利技术 在云上,PieCloudDB 利用 eMPP(elastic Massive Parallel Proce 高效的文件格式,可在节省网络请求的同时提高计算效率。 全新的优化器「达奇」 PieCloudDB 可以更智能高效地生成统计信息,并生成更高 效的查询计划,达奇优化器支持聚集下推,预计算,Block Skipping 等高级特性,全面满足各种复杂的分析查询需求。 IvorySQL开源数据库社区 文本 时间序列分析 机器学习 数据转换 深度学习 传统BI 地理信息 PieCloudDB
    0 码力 | 47 页 | 1.80 MB | 1 年前
    3
  • pdf文档 PieCloudDB云原生数仓虚拟化之路

    数据 计算 发现 数据:云上数据既是隔离也是连通。从安全的⾓度是隔离,同时具 备数据共享的能⼒。 例如:投资管理系统和财务管理系统可以各⾃管理,按需分享。 计算:云上计算资源可以弹性分配。有查询计算任务的时候按需启动, 按照使⽤时间和规模计算成本,⽽不是购买⼤量服务器静置为不确定 的使⽤额外⽀付成本。 发现:在云上,对计算模型以更低成本提供指数级的存储和计算资源, 帮助甲方的业务模 Confidential Pi e Cl oudDB技术突破:数仓虚拟化 云原生存算分离架构 运用元数据-计算-数据分离的三层架构,实现云上存储资源与 计算资源的独⽴管理。云上计算资源可弹性分配,有查询计 算任务的时候按需启动,按照使⽤时间和规模计算成本。 eMPP分布式专利技术 在云上,PieCloudDB利⽤eMPP(elastic Massive Parallel Processi 高效的文件格式,可在节省⽹络请求的同时提⾼计算效率。 全新的优化器「达奇」 PieCloudDB可以更智能⾼效地⽣成统计信息,并⽣成更⾼ 效的查询计划,达奇优化器支持聚集下推,预计算,Block Skipping等高级特性,全面满足各种复杂的分析查询需求。 @2022 OpenPie. All rights reserved. OpenPie Confidential 文本 时间序列分析
    0 码力 | 44 页 | 1.64 MB | 1 年前
    3
  • pdf文档 云原生数据库PieCloudDB 性能优化之路

    通过逻辑上的等价变换,把查询树转换为更加简单高效的等式 • 分发约束条件,收集外连接信息等 • 扫描/连接优化阶段 • 主要处理扫描和连接操作 • 扫描/连接之外的优化阶段 • 主要处理除扫描和连接之外的其他操作,例如聚集、排序等 • 后处理阶段 • 主要把前面的处理结果转换成执行器期望的形式 • 简化表达式 • 简化连接树 • 把 IN,EXISTS 等类型的子查询转换为半连接 • 提升子查询 提升子查询 • 把外连接转换为内连接 • 把外连接转换为反连接 • 分发约束条件 • 构建等价类 • 收集外连接信息 • 消除无用连接 • … SELECT … FROM foo WHERE EXISTS (SELECT 1 FROM bar WHERE foo.a = bar.c); => SELECT … FROM foo *SEMI JOIN* bar ON foo.a = (COALESCE( bar.c, 1) = 42) -> Seq Scan on foo -> Materialize -> Seq Scan on bar (5 rows) • 主要处理查询语句中FROM和WHERE部分 • 同时也会考虑到ORDER BY的信息 • 代价驱动 • 为基表生成扫描路径,并计算扫描路径的代价和结果集大小 • 搜索整个连接顺序空间,为连接操作生成连接路径
    0 码力 | 26 页 | 711.44 KB | 1 年前
    3
共 19 条
  • 1
  • 2
前往
页
相关搜索词
PostgreSQL查询优化解析PieCloudDBDatabase产品白皮皮书白皮书原生虚拟数仓社区集群安装部署手册V2版本说明数据据库数据库eMPP架构构设设计架构设计实现DataCS赋能工业软件创新实践虚拟化性能
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩