PostgreSQL 查询优化器解析0 码力 | 37 页 | 851.23 KB | 1 年前3
πDataCS赋能工业软件创新与实践reserved. OpenPie Confidential @2024 OpenPie. All rights reserved. OpenPie Confidential πDataCS 赋能⼯业软件创新与实践 吴疆 拓数派产品社区总监 CONTENTS @2024 OpenPie. All rights reserved. OpenPie Confidential 杭州拓数派科技发展有限公司 使命:数据计算,只为新发现 愿景:成为立⾜中国基础数据计算领域的全球顶级⾼科技创新机构 价值观:以⼈为本、开放创新、拥抱变化、诚信正直 拓数派中国总部与全球分支机构 海 外 研 发 中 ⼼ 北京研发中⼼ 杭 州 总 部 上海全球品牌战略与⽣态发展中⼼ ⼴州研发中⼼ @2024 OpenPie. All rights reserved. OpenPie Confidential 国际顶级创始团队 2021 2022 当天即获得头部产业基⾦天使轮投资 成为Day-1准独角兽 7月 与中国⼈民⼤学成立实习基地,打造中 国的云原⽣数据库世界级智⼒⾼地 11月 4月 获得元⽲重元和东吴证券Pre-A轮投资 标 志着企业进⼊快速成长期 拓数派 正式成立 成立杭州总部、北京研发中⼼、 上海全球品牌战略与⽣态发展中⼼ 蓬勃发展的拓数派 驱动数据计算时代的到来 9月 成立加拿⼤研发中⼼0 码力 | 36 页 | 4.25 MB | 1 年前3
云时代下多数据计算引擎的设计与实现reserved. OpenPie Confidential @2024 OpenPie. All rights reserved. OpenPie Confidential 云时代下多数据计算引擎的设计与实现 郭罡 CTO 拓数派(OpenPie) @2024 OpenPie. All rights reserved. OpenPie Confidential 关 于 拓 数 派 • 成立于2021年,以“Data 大数据计算系 统云存储底座 @2024 OpenPie. All rights reserved. OpenPie Confidential 多计算引擎 内置计算引擎 Postgres执行器 全新的向量化执行引 擎 向量数据库 单机和分布式 Spark 客户依赖 跑批任务 机器学习 …… ... 按需增加 @2024 OpenPie. All rights reserved0 码力 | 15 页 | 3.09 MB | 1 年前3
PieCloudDB Database 产品白皮书 油”,如同石油驱动了工业化时代的进步,大数据将推动智能化与数字化时代的发展。 Annual Size of the Global Datasphere zetabytes 击需视各2nk 2n 2n6 201 2018 20192070 20717022 2973 2024 2025 1DC:全球数据圈预测 数据量的爆发式增长 为了挖掘数据的价值,企业面临着海量数据的存储与分析需求,业务也面临着更多热点及突发流量所带来的挑战。面 很多受欢迎的数据库仓库均为分布式数据库,而典型 分布式数据库系统大多是 MPP (大规模并行计算) 架构。 MPP 架构的数据库以 PC 服务器为单位,通过如下图所示的组群方式来扩展存储和计算。假设一个宽表有3亿条记录 MPP 数据库会尝试在每台 PC 服务器的硬盘上分布1 录。数据计算时,所有机器同时并行计算,理论上最 把计算时间降低到单机部署的 1/n (n为机器数量) ,节省了海量数据的处理时间。 环境资源利用率,无论是存储或是计算资源往往都不尽人意。随着存储和工作负载需求的日益增长,面临数据库的扩 容和升级时,由于传统数据仓库架构存储和计算的紧密耦合,往往需要企业花费巨大的运维和时间成本,且操作繁 琐。 木桶效应 传统 MPP 数据仓库架构存在“木桶效应”,集群整体执行速度取决于最“短板的”节点的性能。因此,一个节点的 表现往往会 “拖幸”整个集群的性能,导致查询速度变慢。 随卷时间的0 码力 | 17 页 | 2.68 MB | 1 年前3
云原生虚拟数仓PieCloudDB Database产品白皮书2025年增长值175ZB,而中国的数据圈有望于2025年爆炸式增长为世界第一 。数据被称为数字经济时代的“石 油”,如同石油驱动了工业化时代的进步,大数据将推动智能化与数字化时代的发展。 数据量的爆发式增长 为了挖掘数据的价值,企业面临着海量数据的存储与分析需求,业务也面临着更多热点及突发流量所带来的挑战。面 对数据计算(Data Computing)的巨大诉求、数据组织的运行成本的急剧增加、数据格式的丰富多样,企业的数字 很多受欢迎的数据库仓库均为分布式数据库,而典型的传统分布式数据库系统大多是 MPP(大规模并行计算)架构。 MPP 架构的数据库以 PC 服务器为单位,通过如下图所示的组群方式来扩展存储和计算。假设一个宽表有3亿条记录, MPP 数据库会尝试在每台 PC 服务器的硬盘上分布1亿条记录。数据计算时,所有机器同时并行计算,理论上最高可以 把计算时间降低到单机部署的 1/n(n为机器数量),节省了海量数据的处理时间。 环境资源利用率,无论是存储或是计算资源往往都不尽人意。随着存储和工作负载需求的日益增长,面临数据库的扩 容和升级时,由于传统数据仓库架构存储和计算的紧密耦合,往往需要企业花费巨大的运维和时间成本,且操作繁 琐。 木 桶 效 应 传统 MPP 数据仓库架构存在“木桶效应”,集群整体执行速度取决于最“短板的”节点的性能。因此,一个节点的 表现往往会 “拖垮”整个集群的性能,导致查询速度变慢。0 码力 | 17 页 | 2.02 MB | 1 年前3
云原生虚拟数仓 PieCloudDB ETL 方案设计与实现ETL方案设计与实现 邱培峰 拓数派 技术专家 云原生虚拟数仓PieCloudDB 大连理工大学软件工程本科 pgsql@qiupf.dev 邱培峰 拓数派技术专家 ETL解决方案及内核组件研发 PieCloudDB 分布式架构简介 ETL 简述 PieCloudDB ETL方案设计 Postgres -> PieCloudDB 增量数据实时 cdc 演示 01 02 03 • 同一份底层原始数据使用不同系统查询会产生 ETL 需求 • 多种数据源 • 多种数据格式 • 通用的数据处理/转换 • 唯一性与事务性保证 • 断点续传 • 错误处理 • 任务调度总控 pdbconduct • 数据源提取(插件/客户端工具) • 计算节点 Foreign Table, Formatter • 任务调度总控 pdbconduct • 独立运行,通常在 PieCloudDB 按需启动数据源(插件)导出 • 发送 SQL 语句到 PieCloudDB 控制节点 • 收集执行结果,记录进度和错误信息 • INSERT/MERGE 模式 • INSERT 模式,支持单纯导入场景 • 与现有数据没有逻辑关联的时序数据流 • INSERT 模式,步骤1 Ø PieCloudDB Foreign Table,postgres扩展,需要为数据源单独开发 Ø 控制节点上读取数据源信息,决定是否拆分,生成任务信息0 码力 | 29 页 | 5.24 MB | 1 年前3
云原生数据库 PieCloudDB eMPP架构设计与实现pyH� un lytlcD r.p ur re 。 Rock.s 2014 2018 2022 云原⽣数据库 PieCloudDB eMPP架构设计与实现 郭罡 拓数派CTO 关于拓数派(OpenPie) • 成⽴于2021年,以“Data Computing for New Discoveries”「数据计算, 只为新发现」为使命。 • • 很多复杂OLAP查询如果不是IO瓶颈,不会受制于它 • …... 计算引擎之优化器 PieCloudDB Optimizer 是⼀个基于eMPP架构的云原⽣分布式优化器,它 可以为海量数据集上的复杂OLAP查询提供最优的查询计划。 • 分布式优化器 • 处理复杂OLAP查询 • 云原生优化器 处理复杂OLAP查询 多表连接的最 优顺序搜索 多阶段聚集 分区表的静态 和动态裁剪 面向用户,做到开箱即用:离数据分析更近, 离繁琐操作更远; 面向运维,降低部署门槛:在不同的基础设施都能发挥 实力; 面向管理,让管理更轻松:让数据分析运行更透明; 设计目的 智能化云原⽣平台:⾯向⽤户、开箱即⽤ • 降低上⼿难度 — 让⽤户享受数据分析的乐趣 • 使⽤⻔槛低了 — 扩⼤平台受众 • 让更多⽤户离数据更近 — 离繁琐操作更远 PieCloudDB 是这么来帮助我们的⽤户的0 码力 | 31 页 | 1.43 MB | 1 年前3
大模型时代下向量数据库的设计与应用大模型时代下向量数据库的设计与应用 个人简介 目前在拓数派负责向量数据库PieCloudVector产品,聚焦于大模型 与大数据领域。拥有多年数据库内核研发和配套解决方案架构经验, 在加入拓数派前曾就职于开源大数据平台Greenplum团队,担任外部 数据源访问框架,对象存储访问扩展,ETL工具等产品模块的研发, 并曾参与PostgreSQL多个版本的代码贡献,拥有丰富的存储模块核心 国内虚拟数仓和eMPP技术提出者,不断在数据计算引擎方向进 行创新,全面拥抱AI技术趋势。 目录 • 大模型应用和RAG • 向量近似搜索和向量数据库 • PieCloudVector架构设计与挑战 • 案例介绍 大模型 检索增强生成(RAG) 使用大模型可以构造问答,聊天等应用,但同时也存在以下问题 • 数据时效 - LLM训练数据有截止日期,不包含最新信息,无法准确回答相关信息 搜索距离相近数据 • 将这些辅助数据与用户输入同时输入给大模型之后输出 向量数据库 • embedding通过大模型将各种形式的数据转换成向量 向量数据库 • 两个向量可以计算它们的距离(欧式,余弦/内积, 曼哈顿等),距离越近,表示这两个物体越相似 • 向量搜索的基本问题:K-Nearest Neighbor • 在已有的N个向量中找出与给定向量距离最近的K个向量 Query0 码力 | 28 页 | 1.69 MB | 1 年前3
PieCloudDB Database 社区版集群安装部署手册 V2.1.................................................................................... 39 5. 外部工具或者应用连接配置 .......................................................................................... ......... 41 1. 集群规划 此次准备了 3 台虚拟机,具体信息如下: 序号 角色 主机名 IP 地址 操作系统 用户名/密码 PieCloudDB 版本 操作系统版本 1 K8S 的 Master pie4 10.24.31.154 root/openpie V2.1.1 Centos 7 2 K8S pie6 10.24.31.156 备注: l 基于 K8S 环境搭建 PieCloudDB 集群。 l 推荐服务器资源不低于 8C/16GB/300GB。 l 一些镜像和组件默认在根目录下,所以操作系统的根目录要求不小于 150GB。 l 所有服务器需要配置 yum,且能够连接 Internet。 l 部署方案有两种,请根据实际情况选择: Ø 本地无 K8S 环0 码力 | 42 页 | 1.58 MB | 1 年前3
云原生虚拟数仓 PieCloudDB 的架构和关键模块实现在世界范围内的统计信息显示,Nosql和数据湖已经不在数据分析 领域占有主要市场 • Nosql和数据湖缺少很多支持数据分析的重要特性 o 缺少在高并发场景下的隔离性和一致性 o 和现有的BI工具很难集成 • 关系型数据库已经重新成为数据分析的主要平台 NoSQL 和数据湖已经不再是数据分析的主要平台 @2022 OpenPie. All rights reserved. OpenPie 使用数据湖为基础进行数据分析需要多个组件进行集成部署,多个 组件的配合需要大量的开发工作 • 许多缺乏 ANSI SQL 支持,需要专门的技术技能 • 专用引擎/工具(例如图形数据库)通常难以与记录系统集成,限制 了分析和创新的操作化 NoSQL和数据湖为基础的基础设施需要的分析工具不容易集成和部署 @2022 OpenPie. All rights reserved. OpenPie Confidential • 全面的逻辑优化(谓词下推,子查询子链接提升,外连接消除) • 纯粹基于代价的物理优化 • 全面的数据分布特性描述,分布式代价估算,高效分布式表连接 • 多阶段的聚集 专门为复杂查询设计的优化器 分布式环境高效执行器 • 多阶段执行模型 • 流式数据重分布 @2022 OpenPie. All rights reserved. OpenPie Confidential select * from0 码力 | 43 页 | 1.14 MB | 1 年前3
共 21 条
- 1
- 2
- 3













