积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(13)PieCloudDB(13)

语言

全部中文(简体)(13)

格式

全部PDF文档 PDF(13)
 
本次搜索耗时 0.014 秒,为您找到相关结果约 13 个.
  • 全部
  • 数据库
  • PieCloudDB
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 πDataCS赋能工业软件创新与实践

    ,AI数学模型、数据和 计算三者互为增强,全面升级⼤数据系统⾄⼤模型时代 ,赋能⾏业AI场景应用。 具备整体数据平台⽅案,支持多模数据处理(结构化、半结构化 以及非结构化数据),实现数据共享和分析。 软件优化 + 新硬件(FPGA)加速,实现数据全链路的性能飞跃, 让数据存储、SQL查询、向量计算以及机器学习等能⼒全面升级。 @2024 OpenPie. All rights reserved 关⼈才储备量不多,技术兜底依赖于Cloudera,国内第三⽅公司主要是基础运 维和开发为主。 ⼤模型数据计算系统,以云原⽣技术重构数据存储和计算,⼀份数据,多引擎 数据计算。主要解决海量数据的存储和实时计算问题,具备湖仓⼀体化的能⼒, 用户可根据实际情况去选择合适的数据计算引擎。 灵活可扩展的插件式引擎,组件少⽽精(All in One),提供3种计算引擎、1种 Lakehouse引擎,1个 层缓存结构,避免⽹络延迟和数据移动,提⾼计算效率,保 证用户的实时性需求。PieCloudDB针对底层对象存储设计了 ⾼效的⽂件格式,可在节省⽹络请求的同时提⾼计算效率。 全新的优化器「达奇」 PieCloudDB可以更智能⾼效地⽣成统计信息,并⽣成更⾼ 效的查询计划,达奇优化器支持聚集下推,预计算,Block Skipping等⾼级特性,全面满⾜各种复杂的分析查询需求。 @2024 OpenPie. All
    0 码力 | 36 页 | 4.25 MB | 1 年前
    3
  • pdf文档 PieCloudDB Database 产品白皮书

    13 15 16 openpie | PiecloudDB 基于 eMPP (弹性大规模并行计算) 的云原生虚拟数仓 产品白皮书 百岗 行业背景 石油是工业的血液,数据是数字经济的“石油”,数据分析则是石油精炼。 随着信息技术的发展,互联网应用的加速普及,人类进入了数字经济时代。进入二十一世纪以后,随着移动互联网技 术、物联网技术、5G等技术的发展,全球数据圈 (Global Datasphere) 击需视各2nk 2n 2n6 201 2018 20192070 20717022 2973 2024 2025 1DC:全球数据圈预测 数据量的爆发式增长 为了挖掘数据的价值,企业面临着海量数据的存储与分析需求,业务也面临着更多热点及突发流量所带来的挑战。面 对数据计算 (Data Computing) 的巨大诉求、数据组织的运行成本的急剧增加、数据格式的丰富多样,企业的数字 化转型面临巨大挑战,急 容计算资源和存储资源,在扩缩容、运维、迁移上都存在一, 报表结! 传统数据仓库无法及时扩 导致大数据系统天 价值所带来的商业机会 用户在扩 必须同时扩 企业遇到负 时刻或需要紧急得到某个 法弹性、快速地分析业务数据,错失了充分挖掘数据 Openpie | PiecloudDB 基于eMPP (弹性大规模并行计算) 的云原生虚拟数仓 产品白皮书 传统数据仓库价格高昂的软硬件、开发运维人员的高晶薪资需
    0 码力 | 17 页 | 2.68 MB | 1 年前
    3
  • pdf文档 云原生虚拟数仓PieCloudDB Database产品白皮书

    关于OpenPie 附录:术语表 3 3 3 4 5 6 7 7 8 11 13 15 16 目 录 行 业 背 景 石油是工业的血液,数据是数字经济的“石油”,数据分析则是石油精炼。 随着信息技术的发展,互联网应用的加速普及,人类进入了数字经济时代。进入二十一世纪以后,随着移动互联网技 术、物联网技术、5G等技术的发展,全球数据圈(Global Datasphere)呈指数级递增, 。数据被称为数字经济时代的“石 油”,如同石油驱动了工业化时代的进步,大数据将推动智能化与数字化时代的发展。 数据量的爆发式增长 为了挖掘数据的价值,企业面临着海量数据的存储与分析需求,业务也面临着更多热点及突发流量所带来的挑战。面 对数据计算(Data Computing)的巨大诉求、数据组织的运行成本的急剧增加、数据格式的丰富多样,企业的数字 化转型面临巨大挑战,急需 扩容时,必须同时扩 容计算资源和存储资源,在扩缩容、运维、迁移上都存在一定的挑战。当企业遇到负载高峰时刻或需要紧急得到某个 报表结果时,传统数据仓库无法及时扩资源,导致大数据系统无法弹性、快速地分析业务数据,错失了充分挖掘数据 价值所带来的商业机会。 传 统 数 据 仓 库 架 构 成 本 高 昂 传统数据仓库价格高昂的软硬件、开发运维人员的高昂薪资需要企业进行巨大的前期投入。传统数据仓库客户的生产
    0 码力 | 17 页 | 2.02 MB | 1 年前
    3
  • pdf文档 PieCloudDB 的云原生之路

    for New Discoveries”「数据计算,只为新 发现」为使命,成立后的短短10个月时间内,完成了包括头部 产业基金、东吴证券、元禾重元和政府科创平台在内的连续三 轮战略融资。 旗下云原生分析型数据库 PieCloudDB,以云计算架构为设 计基础,首创全新 eMPP 分布式技术,帮助企业建立竞争壁垒 的同时,实现数据价值最大化,并在新基建中承担可靠和可控 的世界级云数据库底座。 IvorySQL开源数据库社区 证用户的实时性需求。PieCloudDB 针对底层对象存储设计了 高效的文件格式,可在节省网络请求的同时提高计算效率。 全新的优化器「达奇」 PieCloudDB 可以更智能高效地生成统计信息,并生成更高 效的查询计划,达奇优化器支持聚集下推,预计算,Block Skipping 等高级特性,全面满足各种复杂的分析查询需求。 IvorySQL开源数据库社区 文本 时间序列分析 机器学习 数据分布和弹性 o 分布式 eMPP 架构 (一致性Hash) o 本地数据减少高延时的云存储访问 o 减少数据移动 o 扩缩容最少的数据移动 • 数据安全性 o 透明数据加密 o 三级密钥 o 实时加解密 构建新一代云原生存储引擎 IvorySQL开源数据库社区 全链路优化 • 全新的存储引擎简墨(JANM) ⚬ 基于对象存储的行列混存架构 ⚬ 压缩比更好 ⚬ Cache 命中率更高
    0 码力 | 47 页 | 1.80 MB | 1 年前
    3
  • pdf文档 PieCloudDB云原生数仓虚拟化之路

    for New Discoveries”「数据计算,只为新发现」为使命, 成立后的短短10个月时间内,完成了包括头部产业基金、东吴证券、元 禾重元和政府科创平台在内的连续三轮战略融资。 旗下云原生分析型数据库PieCloudDB,以云计算架构为设计基础,首创 全新eMPP分布式技术,帮助企业建立竞争壁垒的同时,实现数据价值最 大化,并在新基建中承担可靠和可控的世界级云数据库底座。 打造立足于国内 层缓存结构,避免⽹络延迟和数据移动,提⾼计算效率,保 证⽤户的实时性需求。PieCloudDB针对底层对象存储设计了 高效的文件格式,可在节省⽹络请求的同时提⾼计算效率。 全新的优化器「达奇」 PieCloudDB可以更智能⾼效地⽣成统计信息,并⽣成更⾼ 效的查询计划,达奇优化器支持聚集下推,预计算,Block Skipping等高级特性,全面满足各种复杂的分析查询需求。 @2022 OpenPie. All All rights reserved. OpenPie Confidential 文本 时间序列分析 机器学习 数据转换 深度学习 传统BI 地理信息 P i e C l o u d D B 设 计 原 则 : 1 0 0 % 符 合 D B 标 准 100%兼容DW生态体系 Ø 关系型数学 Ø 完整的SQL 标准 Ø ACID 事务 @2022 OpenPie. All
    0 码力 | 44 页 | 1.64 MB | 1 年前
    3
  • pdf文档 云原生数据库 PieCloudDB eMPP架构设计与实现

    构、⾼速⺴络开发(内核和应⽤层如DPDK) • 分布式系统(SQL/NoSQL/存储) • 最近 7+ 年⼀直从事开源分布式数据库开发 一个eMPP 云原生分布式SQL数据库 一个云原生实时大数据平台基座 愿景:安全可靠 使用简单 功能齐全 性能极致 传统分布式MPP架构痛点 缺乏弹性 业务使用不灵活 成本高昂 集群固定,资源利用率低 木桶效应 扩缩容难 数据孤岛 元数据和用户数据跨集群 (本地查询和远程读取) • 预聚集 • ...... 存储中⽴ • 公有云,私有云,混合云 • 对象存储 (数据共享,存算分离)按需付 费 • 也⽀持HDFS,NAS ⽤户数据可靠安全 • ⽤户数据⾼可靠实时加解密 (TDE) • 分布式对象存储多副本多可⽤区保证数据安全:“⼀份”数据, 避免数据不⼀致 • 将来Time Travel查询“回收站”数据 ⽤户数据查询效率优化 • 远程访问数据要考虑的点:性能和成本 text等 • 实时ETL/ELT性能对⽐PieCloudDB 1.0有巨⼤提升 • 流处理:原⽣⽀持kafka数据导⼊和查询, 在PieCloudDB侧导⼊ 实现exactly once语义 智能化云原⽣平台 (数据服务平台) 面向用户,做到开箱即用:离数据分析更近, 离繁琐操作更远; 面向运维,降低部署门槛:在不同的基础设施都能发挥 实力; 面向管理,让管理更轻松:让数据分析运行更透明;
    0 码力 | 31 页 | 1.43 MB | 1 年前
    3
  • pdf文档 兼容龙蜥的云原生大模型数据计算系统:πDataCS

    才储备量不多,技术兜底依赖于Cloudera,国内第三方公司主要是基础运维和开 发为主。 大模型数据计算系统,以云原生技术重构数据存储和计算,一份数据,多引擎数 据计算。主要解决海量数据的存储和实时计算问题,具备湖仓一体化的能力,用 户可根据实际情况去选择合适的数据计算引擎。 灵活可扩展的插件式引擎,组件少而精(All in One),提供3种计算引擎、1种 Lakehouse引擎,1个 缓存结构,避免网络延迟和数据移动,提高计算效率,保证用 户的实时性需求。PieCloudDB针对底层对象存储设计了高效的 文件格式,可在节省网络请求的同时提高计算效率。 全新的优化器「达奇」 PieCloudDB可以更智能高效地生成统计信息,并生成更高效 的查询计划,达奇优化器支持聚集下推,预计算,Block Skipping等高级特性,全面满足各种复杂的分析查询需求。 πDataCS的第二个计算引擎
    0 码力 | 29 页 | 7.46 MB | 1 年前
    3
  • pdf文档 PieCloudDB:基于PostgreSQL的eMPP云原生数据库

    传统分布式MPP架构痛点 @2022 OpenPie. All rights reserved. OpenPie Confidential 一个云原生实时大数据平台 平台底层:eMPP 云原生分布式SQL数据库 我们的目标:支持多模,serverless的实时大数据平台 关于PieCloudDB 使用简单 功能齐全 性能极致 安全可靠 @2022 OpenPie. All rights reserved 数据分布和弹性 • 分布式eMPP架构 (一致性Hash) • 本地数据减少高延时的云存储访问 • 减少数据移动 • 扩缩容最少的数据移动 • 数据安全性 • 透明数据加密 • 三级密钥 • 实时加解密 @2022 OpenPie. All rights reserved. OpenPie Confidential 构建新一代云原生存储引擎 • 用户成本 (存储成本) • 自动选取适应类型的编码
    0 码力 | 45 页 | 1.32 MB | 1 年前
    3
  • pdf文档 云原生虚拟数仓 PieCloudDB ETL 方案设计与实现

    拓数派技术专家 ETL解决方案及内核组件研发 PieCloudDB 分布式架构简介 ETL 简述 PieCloudDB ETL方案设计 Postgres -> PieCloudDB 增量数据实时 cdc 演示 01 02 03 04 eMPP架构 存算分离,元数据/缓存/计算/云存储 01 02 03 04 各模块可以独立伸缩,模块间接口统一 每一组计算节点组成一个集群,多集群共享 4 3 insert 5 5 4 delete 0 lpk data 1 2 3 3 lpk data 1 2 2 3 3 5 Postgres->PieCloudDB 增量数据实时cdc演示
    0 码力 | 29 页 | 5.24 MB | 1 年前
    3
  • pdf文档 云原生虚拟数仓 PieCloudDB 的架构和关键模块实现

    Confidential • 在世界范围内的统计信息显示,Nosql和数据湖已经不在数据分析 领域占有主要市场 • Nosql和数据湖缺少很多支持数据分析的重要特性 o 缺少在高并发场景下的隔离性和一致性 o 和现有的BI工具很难集成 • 关系型数据库已经重新成为数据分析的主要平台 NoSQL 和数据湖已经不再是数据分析的主要平台 @2022 OpenPie. All rights reserved OpenPie Confidential • Nosql本身对于高级分析支持差 o 图形,地理信息 • Nosql对于复杂查询的支持差 NoSQL和数据湖很难胜任数据分析的工作场景 @2022 OpenPie. All rights reserved. OpenPie Confidential • 使用数据湖为基础进行数据分析需要多个组件进行集成部署,多个 组件的配合需要大量的开发工作 • • 许多缺乏 ANSI SQL 支持,需要专门的技术技能 • 专用引擎/工具(例如图形数据库)通常难以与记录系统集成,限制 了分析和创新的操作化 NoSQL和数据湖为基础的基础设施需要的分析工具不容易集成和部署 @2022 OpenPie. All rights reserved. OpenPie Confidential • 公有云无限的计算池可以提供理想的弹性计算资源 • 公有云廉价且无限容量的对象存储
    0 码力 | 43 页 | 1.14 MB | 1 年前
    3
共 13 条
  • 1
  • 2
前往
页
相关搜索词
DataCS赋能工业软件创新实践PieCloudDBDatabase产品白皮皮书白皮书原生虚拟数仓虚拟化数据据库数据库eMPP架构构设设计架构设计实现兼容模型计算系统基于PostgreSQLETL方案方案设计关键模块
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩