πDataCS赋能工业软件创新与实践,AI数学模型、数据和 计算三者互为增强,全面升级⼤数据系统⾄⼤模型时代 ,赋能⾏业AI场景应用。 具备整体数据平台⽅案,支持多模数据处理(结构化、半结构化 以及非结构化数据),实现数据共享和分析。 软件优化 + 新硬件(FPGA)加速,实现数据全链路的性能飞跃, 让数据存储、SQL查询、向量计算以及机器学习等能⼒全面升级。 @2024 OpenPie. All rights reserved 关⼈才储备量不多,技术兜底依赖于Cloudera,国内第三⽅公司主要是基础运 维和开发为主。 ⼤模型数据计算系统,以云原⽣技术重构数据存储和计算,⼀份数据,多引擎 数据计算。主要解决海量数据的存储和实时计算问题,具备湖仓⼀体化的能⼒, 用户可根据实际情况去选择合适的数据计算引擎。 灵活可扩展的插件式引擎,组件少⽽精(All in One),提供3种计算引擎、1种 Lakehouse引擎,1个 层缓存结构,避免⽹络延迟和数据移动,提⾼计算效率,保 证用户的实时性需求。PieCloudDB针对底层对象存储设计了 ⾼效的⽂件格式,可在节省⽹络请求的同时提⾼计算效率。 全新的优化器「达奇」 PieCloudDB可以更智能⾼效地⽣成统计信息,并⽣成更⾼ 效的查询计划,达奇优化器支持聚集下推,预计算,Block Skipping等⾼级特性,全面满⾜各种复杂的分析查询需求。 @2024 OpenPie. All0 码力 | 36 页 | 4.25 MB | 1 年前3
PieCloudDB Database 产品白皮书 13 15 16 openpie | PiecloudDB 基于 eMPP (弹性大规模并行计算) 的云原生虚拟数仓 产品白皮书 百岗 行业背景 石油是工业的血液,数据是数字经济的“石油”,数据分析则是石油精炼。 随着信息技术的发展,互联网应用的加速普及,人类进入了数字经济时代。进入二十一世纪以后,随着移动互联网技 术、物联网技术、5G等技术的发展,全球数据圈 (Global Datasphere) 击需视各2nk 2n 2n6 201 2018 20192070 20717022 2973 2024 2025 1DC:全球数据圈预测 数据量的爆发式增长 为了挖掘数据的价值,企业面临着海量数据的存储与分析需求,业务也面临着更多热点及突发流量所带来的挑战。面 对数据计算 (Data Computing) 的巨大诉求、数据组织的运行成本的急剧增加、数据格式的丰富多样,企业的数字 化转型面临巨大挑战,急 容计算资源和存储资源,在扩缩容、运维、迁移上都存在一, 报表结! 传统数据仓库无法及时扩 导致大数据系统天 价值所带来的商业机会 用户在扩 必须同时扩 企业遇到负 时刻或需要紧急得到某个 法弹性、快速地分析业务数据,错失了充分挖掘数据 Openpie | PiecloudDB 基于eMPP (弹性大规模并行计算) 的云原生虚拟数仓 产品白皮书 传统数据仓库价格高昂的软硬件、开发运维人员的高晶薪资需0 码力 | 17 页 | 2.68 MB | 1 年前3
云原生虚拟数仓PieCloudDB Database产品白皮书关于OpenPie 附录:术语表 3 3 3 4 5 6 7 7 8 11 13 15 16 目 录 行 业 背 景 石油是工业的血液,数据是数字经济的“石油”,数据分析则是石油精炼。 随着信息技术的发展,互联网应用的加速普及,人类进入了数字经济时代。进入二十一世纪以后,随着移动互联网技 术、物联网技术、5G等技术的发展,全球数据圈(Global Datasphere)呈指数级递增, 。数据被称为数字经济时代的“石 油”,如同石油驱动了工业化时代的进步,大数据将推动智能化与数字化时代的发展。 数据量的爆发式增长 为了挖掘数据的价值,企业面临着海量数据的存储与分析需求,业务也面临着更多热点及突发流量所带来的挑战。面 对数据计算(Data Computing)的巨大诉求、数据组织的运行成本的急剧增加、数据格式的丰富多样,企业的数字 化转型面临巨大挑战,急需 扩容时,必须同时扩 容计算资源和存储资源,在扩缩容、运维、迁移上都存在一定的挑战。当企业遇到负载高峰时刻或需要紧急得到某个 报表结果时,传统数据仓库无法及时扩资源,导致大数据系统无法弹性、快速地分析业务数据,错失了充分挖掘数据 价值所带来的商业机会。 传 统 数 据 仓 库 架 构 成 本 高 昂 传统数据仓库价格高昂的软硬件、开发运维人员的高昂薪资需要企业进行巨大的前期投入。传统数据仓库客户的生产0 码力 | 17 页 | 2.02 MB | 1 年前3
PieCloudDB 的云原生之路for New Discoveries”「数据计算,只为新 发现」为使命,成立后的短短10个月时间内,完成了包括头部 产业基金、东吴证券、元禾重元和政府科创平台在内的连续三 轮战略融资。 旗下云原生分析型数据库 PieCloudDB,以云计算架构为设 计基础,首创全新 eMPP 分布式技术,帮助企业建立竞争壁垒 的同时,实现数据价值最大化,并在新基建中承担可靠和可控 的世界级云数据库底座。 IvorySQL开源数据库社区 证用户的实时性需求。PieCloudDB 针对底层对象存储设计了 高效的文件格式,可在节省网络请求的同时提高计算效率。 全新的优化器「达奇」 PieCloudDB 可以更智能高效地生成统计信息,并生成更高 效的查询计划,达奇优化器支持聚集下推,预计算,Block Skipping 等高级特性,全面满足各种复杂的分析查询需求。 IvorySQL开源数据库社区 文本 时间序列分析 机器学习 数据分布和弹性 o 分布式 eMPP 架构 (一致性Hash) o 本地数据减少高延时的云存储访问 o 减少数据移动 o 扩缩容最少的数据移动 • 数据安全性 o 透明数据加密 o 三级密钥 o 实时加解密 构建新一代云原生存储引擎 IvorySQL开源数据库社区 全链路优化 • 全新的存储引擎简墨(JANM) ⚬ 基于对象存储的行列混存架构 ⚬ 压缩比更好 ⚬ Cache 命中率更高0 码力 | 47 页 | 1.80 MB | 1 年前3
PieCloudDB云原生数仓虚拟化之路for New Discoveries”「数据计算,只为新发现」为使命, 成立后的短短10个月时间内,完成了包括头部产业基金、东吴证券、元 禾重元和政府科创平台在内的连续三轮战略融资。 旗下云原生分析型数据库PieCloudDB,以云计算架构为设计基础,首创 全新eMPP分布式技术,帮助企业建立竞争壁垒的同时,实现数据价值最 大化,并在新基建中承担可靠和可控的世界级云数据库底座。 打造立足于国内 层缓存结构,避免⽹络延迟和数据移动,提⾼计算效率,保 证⽤户的实时性需求。PieCloudDB针对底层对象存储设计了 高效的文件格式,可在节省⽹络请求的同时提⾼计算效率。 全新的优化器「达奇」 PieCloudDB可以更智能⾼效地⽣成统计信息,并⽣成更⾼ 效的查询计划,达奇优化器支持聚集下推,预计算,Block Skipping等高级特性,全面满足各种复杂的分析查询需求。 @2022 OpenPie. All All rights reserved. OpenPie Confidential 文本 时间序列分析 机器学习 数据转换 深度学习 传统BI 地理信息 P i e C l o u d D B 设 计 原 则 : 1 0 0 % 符 合 D B 标 准 100%兼容DW生态体系 Ø 关系型数学 Ø 完整的SQL 标准 Ø ACID 事务 @2022 OpenPie. All0 码力 | 44 页 | 1.64 MB | 1 年前3
云原生数据库 PieCloudDB eMPP架构设计与实现构、⾼速⺴络开发(内核和应⽤层如DPDK) • 分布式系统(SQL/NoSQL/存储) • 最近 7+ 年⼀直从事开源分布式数据库开发 一个eMPP 云原生分布式SQL数据库 一个云原生实时大数据平台基座 愿景:安全可靠 使用简单 功能齐全 性能极致 传统分布式MPP架构痛点 缺乏弹性 业务使用不灵活 成本高昂 集群固定,资源利用率低 木桶效应 扩缩容难 数据孤岛 元数据和用户数据跨集群 (本地查询和远程读取) • 预聚集 • ...... 存储中⽴ • 公有云,私有云,混合云 • 对象存储 (数据共享,存算分离)按需付 费 • 也⽀持HDFS,NAS ⽤户数据可靠安全 • ⽤户数据⾼可靠实时加解密 (TDE) • 分布式对象存储多副本多可⽤区保证数据安全:“⼀份”数据, 避免数据不⼀致 • 将来Time Travel查询“回收站”数据 ⽤户数据查询效率优化 • 远程访问数据要考虑的点:性能和成本 text等 • 实时ETL/ELT性能对⽐PieCloudDB 1.0有巨⼤提升 • 流处理:原⽣⽀持kafka数据导⼊和查询, 在PieCloudDB侧导⼊ 实现exactly once语义 智能化云原⽣平台 (数据服务平台) 面向用户,做到开箱即用:离数据分析更近, 离繁琐操作更远; 面向运维,降低部署门槛:在不同的基础设施都能发挥 实力; 面向管理,让管理更轻松:让数据分析运行更透明;0 码力 | 31 页 | 1.43 MB | 1 年前3
兼容龙蜥的云原生大模型数据计算系统:πDataCS才储备量不多,技术兜底依赖于Cloudera,国内第三方公司主要是基础运维和开 发为主。 大模型数据计算系统,以云原生技术重构数据存储和计算,一份数据,多引擎数 据计算。主要解决海量数据的存储和实时计算问题,具备湖仓一体化的能力,用 户可根据实际情况去选择合适的数据计算引擎。 灵活可扩展的插件式引擎,组件少而精(All in One),提供3种计算引擎、1种 Lakehouse引擎,1个 缓存结构,避免网络延迟和数据移动,提高计算效率,保证用 户的实时性需求。PieCloudDB针对底层对象存储设计了高效的 文件格式,可在节省网络请求的同时提高计算效率。 全新的优化器「达奇」 PieCloudDB可以更智能高效地生成统计信息,并生成更高效 的查询计划,达奇优化器支持聚集下推,预计算,Block Skipping等高级特性,全面满足各种复杂的分析查询需求。 πDataCS的第二个计算引擎0 码力 | 29 页 | 7.46 MB | 1 年前3
PieCloudDB:基于PostgreSQL的eMPP云原生数据库传统分布式MPP架构痛点 @2022 OpenPie. All rights reserved. OpenPie Confidential 一个云原生实时大数据平台 平台底层:eMPP 云原生分布式SQL数据库 我们的目标:支持多模,serverless的实时大数据平台 关于PieCloudDB 使用简单 功能齐全 性能极致 安全可靠 @2022 OpenPie. All rights reserved 数据分布和弹性 • 分布式eMPP架构 (一致性Hash) • 本地数据减少高延时的云存储访问 • 减少数据移动 • 扩缩容最少的数据移动 • 数据安全性 • 透明数据加密 • 三级密钥 • 实时加解密 @2022 OpenPie. All rights reserved. OpenPie Confidential 构建新一代云原生存储引擎 • 用户成本 (存储成本) • 自动选取适应类型的编码0 码力 | 45 页 | 1.32 MB | 1 年前3
云原生虚拟数仓 PieCloudDB ETL 方案设计与实现拓数派技术专家 ETL解决方案及内核组件研发 PieCloudDB 分布式架构简介 ETL 简述 PieCloudDB ETL方案设计 Postgres -> PieCloudDB 增量数据实时 cdc 演示 01 02 03 04 eMPP架构 存算分离,元数据/缓存/计算/云存储 01 02 03 04 各模块可以独立伸缩,模块间接口统一 每一组计算节点组成一个集群,多集群共享 4 3 insert 5 5 4 delete 0 lpk data 1 2 3 3 lpk data 1 2 2 3 3 5 Postgres->PieCloudDB 增量数据实时cdc演示0 码力 | 29 页 | 5.24 MB | 1 年前3
云原生虚拟数仓 PieCloudDB 的架构和关键模块实现Confidential • 在世界范围内的统计信息显示,Nosql和数据湖已经不在数据分析 领域占有主要市场 • Nosql和数据湖缺少很多支持数据分析的重要特性 o 缺少在高并发场景下的隔离性和一致性 o 和现有的BI工具很难集成 • 关系型数据库已经重新成为数据分析的主要平台 NoSQL 和数据湖已经不再是数据分析的主要平台 @2022 OpenPie. All rights reserved OpenPie Confidential • Nosql本身对于高级分析支持差 o 图形,地理信息 • Nosql对于复杂查询的支持差 NoSQL和数据湖很难胜任数据分析的工作场景 @2022 OpenPie. All rights reserved. OpenPie Confidential • 使用数据湖为基础进行数据分析需要多个组件进行集成部署,多个 组件的配合需要大量的开发工作 • • 许多缺乏 ANSI SQL 支持,需要专门的技术技能 • 专用引擎/工具(例如图形数据库)通常难以与记录系统集成,限制 了分析和创新的操作化 NoSQL和数据湖为基础的基础设施需要的分析工具不容易集成和部署 @2022 OpenPie. All rights reserved. OpenPie Confidential • 公有云无限的计算池可以提供理想的弹性计算资源 • 公有云廉价且无限容量的对象存储0 码力 | 43 页 | 1.14 MB | 1 年前3
共 13 条
- 1
- 2













