PostgreSQL 查询优化器解析0 码力 | 37 页 | 851.23 KB | 1 年前3
云原生数据库PieCloudDB 性能优化之路郭峰 拓数派 云原生数据库PieCloudDB 性能优化之路 打造立足于国内 基础数据计算领域的世界级高科技创新驱动机构 杭州拓数派科技发展有限公司(又称“OpenPie”),以“Data Computing for New Discoveries”「数据计算,只为新发现」为使命, 成立后的短短10个月时间内,完成了包括头部产业基金、东吴证券、元 禾重元和政府科创平台在内的连续三轮战略融资。 PostgreSQL优化器简介 PieCloudDB优化器之分布式特性简介 PieCloudDB优化器之云原生特性简介 Q/A Contents 录 目 01 • 预处理阶段 • 通过逻辑上的等价变换,把查询树转换为更加简单高效的等式 • 分发约束条件,收集外连接信息等 • 扫描/连接优化阶段 • 主要处理扫描和连接操作 • 扫描/连接之外的优化阶段 • 主要处理除扫 以上每一步操作都会产生一个或多个路径 • 为每个路径添加LockRows, Limit, ModifyTable • 把最优路径转换为查询计划 • 对最优计划进行一些调整 02 • PieCloudDB优化器拓展了PostgreSQL优化器,使其适用于分布式架构 • 引入了Motion的概念,使得数据可以在不同的工作节点之间移动 • 利用Motion产生分布式的查询计划 • 这些分布式的查询计划会被分为更小的单元,并被分发到不同的工作节点中并行执行0 码力 | 26 页 | 711.44 KB | 1 年前3
PieCloudDB Database 产品白皮书 分布式技术,旨在为企业提供包含实时处理、 移级扩缩容、弹性计算、集成数据分析等强大功能的云上数据存储和计算引擎,助力企业实现数据价值最大化。 pieCloudDB 为企业构建坚如般石的虚拟数仓,以云资源最优化配置实现无限数据计算可能,基于新一代数仓虚拟 化,提供云数仓智能化解决方案,助力企业建立以数据资产为核心的竞争整垒。 Openpie | PiecloudDB 基于eMPP (弹性大规模并行计算) 用以 及用户权限等功能; 2. 计算节点: 无状态节点 (包括 Coordinator 和 Executer) ,主要负责接收用户请求和数据计算,支持 动态弹性伸缩,提供数据查询 、执行计划、查询优化、数据加载、连接管理、并行计算以及资源隔离 等功能; 3. 存储节点; 存算分离架构,支持本地存储和云存储,推荐采用对象存储,提供数据压缩、数据加密、 多模存储以及多级缓存等功能; 4. 云原生平台节点: (Procedure Language) 的支持使得 PieCloudDB 可以无锋集成业内常见的提取/ 转换/加载 (ETL) 和 Bl (商业智能) 工具。企业只需安排少量的集成工作,就可以使用现有的使用标准 SQL 结构和接 口的分析工具让应用在 PieCloudDB -上 从而避免了企业受制于供应商,帮助企业在控制业务风险的同时推动创 新。 。 多维度弹性扩缩容 pieCloudDB0 码力 | 17 页 | 2.68 MB | 1 年前3
云原生虚拟数仓PieCloudDB Database产品白皮书分布式技术,可将物理数仓整合到云原生数据 计算平台,根据数据授权动态创建虚拟数仓,按需灵活计算,打破数据孤岛,支撑更大模型所需的数据和计算。 PieCloudDB 为企业构建「坚如磐石」的虚拟数仓,以云资源最优化配置实现无限数据计算可能,基于新一代数仓虚 拟化,提供云数仓智能化解决方案,助力企业建立以数据资产为核心的竞争壁垒。 7 PieCloudDB 产品架构 PieCloudDB 整体架 计算节点: 无状态节点(包括 Coordinator 和 Executer),主要负责接收用户请求和数据计算,支持 动态弹性伸缩,提供数据查询、执行计划、查询优化、数据加载、连接管理、并行计算以及资源隔离 等功能; 3. 存储节点: 存算分离架构,支持本地存储和云存储,推荐采用对象存储,提供数据压缩、数据加密、 对SQL的全面支持和多种过程语言(Procedure Language)的支持使得 PieCloudDB 可以无缝集成业内常见的提取/ 转换/加载(ETL)和 BI(商业智能)工具。企业只需安排少量的集成工作,就可以使用现有的使用标准 SQL 结构和接 口的分析工具让应用在 PieCloudDB 上运行,从而避免了企业受制于供应商,帮助企业在控制业务风险的同时推动创 新。 PieCloudDB 采取存算分离的0 码力 | 17 页 | 2.02 MB | 1 年前3
云原生虚拟数仓 PieCloudDB 的架构和关键模块实现在世界范围内的统计信息显示,Nosql和数据湖已经不在数据分析 领域占有主要市场 • Nosql和数据湖缺少很多支持数据分析的重要特性 o 缺少在高并发场景下的隔离性和一致性 o 和现有的BI工具很难集成 • 关系型数据库已经重新成为数据分析的主要平台 NoSQL 和数据湖已经不再是数据分析的主要平台 @2022 OpenPie. All rights reserved. OpenPie 使用数据湖为基础进行数据分析需要多个组件进行集成部署,多个 组件的配合需要大量的开发工作 • 许多缺乏 ANSI SQL 支持,需要专门的技术技能 • 专用引擎/工具(例如图形数据库)通常难以与记录系统集成,限制 了分析和创新的操作化 NoSQL和数据湖为基础的基础设施需要的分析工具不容易集成和部署 @2022 OpenPie. All rights reserved. OpenPie Confidential • OpenPie. All rights reserved. OpenPie Confidential • 全面的逻辑优化(谓词下推,子查询子链接提升,外连接消除) • 纯粹基于代价的物理优化 • 全面的数据分布特性描述,分布式代价估算,高效分布式表连接 • 多阶段的聚集 专门为复杂查询设计的优化器 分布式环境高效执行器 • 多阶段执行模型 • 流式数据重分布 @2022 OpenPie. All0 码力 | 43 页 | 1.14 MB | 1 年前3
兼容龙蜥的云原生大模型数据计算系统:πDataCS重构数据存储和计算,一份存储,多引擎数据计算,全面升级大数据系统至大模型时代,使得自主可 控的大模型数据计算系统保持全球领先,成为AI的基础科技底座的同时,开启AI技术的新范式。 πDataCS旨在助力企业优化计算瓶颈、充分利用和发挥数据规模优势,构建核心技术壁垒,让大模 型技术全面赋能行业AI场景应用,助力合作伙伴成功,为企业创造更大的商业价值。 全 球 数 据 计 算 系 统 引 领 者 • 归 One),提供3种计算引擎、1种 Lakehouse引擎,1个硬件加速器,应对各种场景的计算,同时也兼容Spark、 Flink等计算任务,保留用户的使用习惯。 生态完善,支持主流的开发语言和数据科学工具,支持多模数据处理(结构化、 半结构化以及非结构化),提供标准的SQL接口和API,完成各种复杂场景的数据 处理,业务开发周期短,现存的代码基本可以无缝迁移和复用。 国内自主研发,具备社区版、 TDE技术保证了所有数据在落盘前完成加密,服务器 无感知技术(Serverless)利用云上无限计算资源和 弹性保证了虚拟数仓永远在线可用,S3存储和跨云灾 备能力保证了永不丢数。 数据计算资源按需扩缩容,实现计算资源配置最优化, 提升数仓的敏捷性和弹性,打开无限数据计算空间,支 撑更大模型所需的数据和计算。更好地赋能业务发展并 走向绿色。 降低数仓硬件和管理成本 提升数据计算资源利用效益 坚如磐石 | 高安全 高在线0 码力 | 29 页 | 7.46 MB | 1 年前3
大模型时代下向量数据库的设计与应用与大数据领域。拥有多年数据库内核研发和配套解决方案架构经验, 在加入拓数派前曾就职于开源大数据平台Greenplum团队,担任外部 数据源访问框架,对象存储访问扩展,ETL工具等产品模块的研发, 并曾参与PostgreSQL多个版本的代码贡献,拥有丰富的存储模块核心 开发和性能优化等实践经验。 邱培峰 拓数派向量数据库负责人 拓数派:大模型数据计算系统先行者 • 拓数派( OpenPie)是立足于国内的基础数据计算领域高科技 (filtered) P2 (filtered) 向量数据库 • 存储向量和原始实体(文字/图像/语音)及元信息,并将它们关联起来 • 对向量数据建立索引,可以实现高效近似搜索 • 配套调用接口和生态工具 • 技术路线 • 从向量搜索及索引算法实现出发,为其搭配数据库功能 • 从数据存储方案(关系型数据库/非关系型数据库)出发,为其开发向量搜索及索引算法 PieCloudVector • 基于postgres打造的数据库内核0 码力 | 28 页 | 1.69 MB | 1 年前3
PieCloudDB Database V2.1 版本说明10 月 内 核 • 聚集下推功能得到增强:通过把聚集操作下推到连接操作之前去执行,极大的减 少连接操作需要处理的数据量,使得查询性能显著提升。 • 实现了 Block Skipping 的优化机制:数据库运行查询语句时,通过计算每个块 (block)中列聚集信息,在执行期间跳过非必要的数据块,减少数据读取量提高查询性 能。 • 极速 Analyze(Smart Analyze): PieCloudDB Vacuum 优化:在元数据层通过快速过滤不需要 vacuum 的数据,从而实现 vacuum 加速。 • 存储引擎 简墨(JANM) 异常处理的优化: 避免各种异常情况下数据残留。 • 简墨(JANM)分布式处理增强:更高效的元数据采集和分发,提升用户查询响 应时间,降低系统负载 • 简墨(JANM)动态分配读取文件增强 dispatch 性能:此优化将动态的分配要 • 原生格式存储:在 HDFS/NAS 系统上支持原生存储格式。 • 对 Orca 的支持:PieCloudDB 支持查询优化器 Orca。Orca 是一款开源的、基 于 Cascades 模型的模块化查询优化器,帮助用户对 SQL 进行优化,生成高效的查询计 划。 • 支持超大数据量字段 • 支持快速 ETL/ELT: Kafka 流数据导入支持,copy0 码力 | 3 页 | 257.15 KB | 1 年前3
云原生数据库 PieCloudDB eMPP架构设计与实现产品已经在⼀些⾦融、医疗等⾏业开始使⽤。 关于我 • 毕业于中国科技⼤学,AI相关专业 • 毕业 1 年后到现在⼀直从事底层基础软件开发,10多年开发经验 • 领域涉及到: • 代码级/算法级/系统级性能优化 • Linux/Unix内核和系统开发、虚拟化(芯⽚KVM⽀持实现)和云计算架 构、⾼速⺴络开发(内核和应⽤层如DPDK) • 分布式系统(SQL/NoSQL/存储) • 最近 7+ 年⼀直从事开源分布式数据库开发 减轻FoundationDB集群负担 • 加速查询优化(⺴络延迟远⾼于内存延迟) • 以Postgres原⽣的元数据缓存概念为基础,优化重构实现适⽤于 多集群架构 ⽤户数据存储引擎 • PAX(⾏列混存)配以⾼效压缩 • Block⽂件为⼀个存储(MVCC)单位 • 辅助信息存储⽤于计算优化 • 设计考虑: • ⾼效和精准的统计信息收集 • 存储和计算成本 • 各种计算优化 • SIMD, Cache ⽤户数据查询效率优化 • 远程访问数据要考虑的点:性能和成本 • 如何解决? • 数据和/或辅助信息缓存,同时⼀致性Hash减少数据移动 • 读取优化(⽐如异步并⾏等) • 计算优化(各种功能特性持续优化中) • 很多复杂OLAP查询如果不是IO瓶颈,不会受制于它 • …... 计算引擎之优化器 PieCloudDB Optimizer 是⼀个基于eMPP架构的云原⽣分布式优化器,它0 码力 | 31 页 | 1.43 MB | 1 年前3
PieCloudDB:基于PostgreSQL的eMPP云原生数据库Multi-Could 云上设施 • 对象存储 (数据共享,存算分离) • 兼容HDFS,NAS,本地磁盘 • 公有云,私有云,混合云 • 现代的硬件 • CPU/GPU 高速缓存访问 • 数据的局部性优化 (SIMD) • 现代存储技术 • 新硬件的使用 @2022 OpenPie. All rights reserved. OpenPie Confidential 构建新一代云原生存储引擎 @2022 OpenPie. All rights reserved. OpenPie Confidential 构建新一代云原生存储引擎 • 完备的事务 • Block文件级别的MVCC实现 • 优化器与执行器的演进 • 向量化 • 文件查询裁剪(Block Skipping) • 聚集下推扫描(PreAgg Pushdown Scan) @2022 OpenPie. All rights , 只 为 新 发 现 04 优化器 @2022 OpenPie. All rights reserved. OpenPie Confidential PieCloudDB Optimizer 是一个基于eMPP架构的云原生分布式优化器,它 可以为海量数据集上的复杂OLAP查询提供最优的查询计划。 • 分布式优化器 • 处理复杂OLAP查询 • 云原生优化器 PieCloudDB Optimizer0 码力 | 45 页 | 1.32 MB | 1 年前3
共 20 条
- 1
- 2













