 云原生数据库PieCloudDB 性能优化之路预处理阶段 • 通过逻辑上的等价变换,把查询树转换为更加简单高效的等式 • 分发约束条件,收集外连接信息等 • 扫描/连接优化阶段 • 主要处理扫描和连接操作 • 扫描/连接之外的优化阶段 • 主要处理除扫描和连接之外的其他操作,例如聚集、排序等 • 后处理阶段 • 主要把前面的处理结果转换成执行器期望的形式 • 简化表达式 • 简化连接树 • 把 IN,EXISTS 等类型的子查询转换为半连接 bar (5 rows) • 主要处理查询语句中FROM和WHERE部分 • 同时也会考虑到ORDER BY的信息 • 代价驱动 • 为基表生成扫描路径,并计算扫描路径的代价和结果集大小 • 搜索整个连接顺序空间,为连接操作生成连接路径 • O(n!) • 动态规划 • 遗传算法 • 考虑外连接对连接顺序的限制 (A leftjoin B on (Pab)) innerjoin C0 码力 | 26 页 | 711.44 KB | 1 年前3 云原生数据库PieCloudDB 性能优化之路预处理阶段 • 通过逻辑上的等价变换,把查询树转换为更加简单高效的等式 • 分发约束条件,收集外连接信息等 • 扫描/连接优化阶段 • 主要处理扫描和连接操作 • 扫描/连接之外的优化阶段 • 主要处理除扫描和连接之外的其他操作,例如聚集、排序等 • 后处理阶段 • 主要把前面的处理结果转换成执行器期望的形式 • 简化表达式 • 简化连接树 • 把 IN,EXISTS 等类型的子查询转换为半连接 bar (5 rows) • 主要处理查询语句中FROM和WHERE部分 • 同时也会考虑到ORDER BY的信息 • 代价驱动 • 为基表生成扫描路径,并计算扫描路径的代价和结果集大小 • 搜索整个连接顺序空间,为连接操作生成连接路径 • O(n!) • 动态规划 • 遗传算法 • 考虑外连接对连接顺序的限制 (A leftjoin B on (Pab)) innerjoin C0 码力 | 26 页 | 711.44 KB | 1 年前3
 云原生数据库 PieCloudDB eMPP架构设计与实现ChinaUrnx ,千UB A 2022 2022/12/14-16 2OlO OynamoDB CirroD 叩i Hubble B . SinoOB Ste 云树Sh可d :.. G.IIX卢罩" abr ::::· … .• e …. pyH� un lytlcD r.p ur re 。 Rock.s 2014 是⼀个基于eMPP架构的云原⽣分布式优化器,它 可以为海量数据集上的复杂OLAP查询提供最优的查询计划。 • 分布式优化器 • 处理复杂OLAP查询 • 云原生优化器 处理复杂OLAP查询 多表连接的最 优顺序搜索 多阶段聚集 分区表的静态 和动态裁剪 相关子查询的 提升转换 CTE和递归CTE 的优化 等等 更多⾼阶计算功能 • 聚集下推:1.0已经⽀持,在⼀些情况下可以⼗倍百倍更多倍提升0 码力 | 31 页 | 1.43 MB | 1 年前3 云原生数据库 PieCloudDB eMPP架构设计与实现ChinaUrnx ,千UB A 2022 2022/12/14-16 2OlO OynamoDB CirroD 叩i Hubble B . SinoOB Ste 云树Sh可d :.. G.IIX卢罩" abr ::::· … .• e …. pyH� un lytlcD r.p ur re 。 Rock.s 2014 是⼀个基于eMPP架构的云原⽣分布式优化器,它 可以为海量数据集上的复杂OLAP查询提供最优的查询计划。 • 分布式优化器 • 处理复杂OLAP查询 • 云原生优化器 处理复杂OLAP查询 多表连接的最 优顺序搜索 多阶段聚集 分区表的静态 和动态裁剪 相关子查询的 提升转换 CTE和递归CTE 的优化 等等 更多⾼阶计算功能 • 聚集下推:1.0已经⽀持,在⼀些情况下可以⼗倍百倍更多倍提升0 码力 | 31 页 | 1.43 MB | 1 年前3
 大模型时代下向量数据库的设计与应用拥有强大的数据库内核研发团队、数据科学团队和数字化转型团 队; • 国内虚拟数仓和eMPP技术提出者,不断在数据计算引擎方向进 行创新,全面拥抱AI技术趋势。 目录 • 大模型应用和RAG • 向量近似搜索和向量数据库 • PieCloudVector架构设计与挑战 • 案例介绍 大模型 检索增强生成(RAG) 使用大模型可以构造问答,聊天等应用,但同时也存在以下问题 • 数据时效 - L 对每个用户输入同样通过embedding过程得到向量,从向量数据库中搜索距离相近数据 • 将这些辅助数据与用户输入同时输入给大模型之后输出 向量数据库 • embedding通过大模型将各种形式的数据转换成向量 向量数据库 • 两个向量可以计算它们的距离(欧式,余弦/内积, 曼哈顿等),距离越近,表示这两个物体越相似 • 向量搜索的基本问题:K-Nearest Neighbor • 在已 对向量数据建立索引,可以实现高效近似搜索 • 配套调用接口和生态工具 • 技术路线 • 从向量搜索及索引算法实现出发,为其搭配数据库功能 • 从数据存储方案(关系型数据库/非关系型数据库)出发,为其开发向量搜索及索引算法 PieCloudVector • 基于postgres打造的数据库内核 • 单机或分布式部署 • 支持完整的ACID • SQL进行向量搜索 • 支持向量标量混合查询0 码力 | 28 页 | 1.69 MB | 1 年前3 大模型时代下向量数据库的设计与应用拥有强大的数据库内核研发团队、数据科学团队和数字化转型团 队; • 国内虚拟数仓和eMPP技术提出者,不断在数据计算引擎方向进 行创新,全面拥抱AI技术趋势。 目录 • 大模型应用和RAG • 向量近似搜索和向量数据库 • PieCloudVector架构设计与挑战 • 案例介绍 大模型 检索增强生成(RAG) 使用大模型可以构造问答,聊天等应用,但同时也存在以下问题 • 数据时效 - L 对每个用户输入同样通过embedding过程得到向量,从向量数据库中搜索距离相近数据 • 将这些辅助数据与用户输入同时输入给大模型之后输出 向量数据库 • embedding通过大模型将各种形式的数据转换成向量 向量数据库 • 两个向量可以计算它们的距离(欧式,余弦/内积, 曼哈顿等),距离越近,表示这两个物体越相似 • 向量搜索的基本问题:K-Nearest Neighbor • 在已 对向量数据建立索引,可以实现高效近似搜索 • 配套调用接口和生态工具 • 技术路线 • 从向量搜索及索引算法实现出发,为其搭配数据库功能 • 从数据存储方案(关系型数据库/非关系型数据库)出发,为其开发向量搜索及索引算法 PieCloudVector • 基于postgres打造的数据库内核 • 单机或分布式部署 • 支持完整的ACID • SQL进行向量搜索 • 支持向量标量混合查询0 码力 | 28 页 | 1.69 MB | 1 年前3
 πDataCS赋能工业软件创新与实践⾏业顶级数据库的 抽象思考和设计原则复用 @2024 OpenPie. All rights reserved. OpenPie Confidential 云原⽣分布式优化器--达奇 多表连接的最优 顺序搜索 多阶段聚集 分区表的静态 和动态裁剪 相关子查询的 提升转换 CTE和递归 CTE的优化 其他相关优化 聚集下推 通过把聚集操作下推到连接操作之前去执⾏,极⼤的减少连接操作需要处理的数据量,使得查询性能显 All rights reserved. OpenPie Confidential P i e C l o u d V e c t o r 竞 争 优 势 专用向量数据库 具备向量搜索能⼒的云原⽣虚拟数仓 具备向量搜索能⼒的传统数据库 πCloudVector • 冗余数据、过度的数据搬运、分布式组件之间 的数据缺乏⼀致性 • 专业技能的额外劳动⼒成本、额外的许可成本 • 有限的查询语⾔能⼒、可编程性和可扩展性 打破专用向量数据库的局限性 • 统⼀的数据平台,在动态扩缩容过程中⽆需移 动数据,充分保障数据的⼀致性 • 使用简单,学习成本低,⽆需额外投⼊ • 既满⾜了向量存储和向量搜索的需求,又升级 实现了云上分布式向量化计算的技术突破 • 支持多种向量搜索算法,为不同的业务场景提 供更灵活⾼效的解决⽅案 突破传统数据库的技术瓶颈 • ⽆法弹性扩缩向量化存储和计算的资源 • 在向量化计算的场景下,易用性和性能较差0 码力 | 36 页 | 4.25 MB | 1 年前3 πDataCS赋能工业软件创新与实践⾏业顶级数据库的 抽象思考和设计原则复用 @2024 OpenPie. All rights reserved. OpenPie Confidential 云原⽣分布式优化器--达奇 多表连接的最优 顺序搜索 多阶段聚集 分区表的静态 和动态裁剪 相关子查询的 提升转换 CTE和递归 CTE的优化 其他相关优化 聚集下推 通过把聚集操作下推到连接操作之前去执⾏,极⼤的减少连接操作需要处理的数据量,使得查询性能显 All rights reserved. OpenPie Confidential P i e C l o u d V e c t o r 竞 争 优 势 专用向量数据库 具备向量搜索能⼒的云原⽣虚拟数仓 具备向量搜索能⼒的传统数据库 πCloudVector • 冗余数据、过度的数据搬运、分布式组件之间 的数据缺乏⼀致性 • 专业技能的额外劳动⼒成本、额外的许可成本 • 有限的查询语⾔能⼒、可编程性和可扩展性 打破专用向量数据库的局限性 • 统⼀的数据平台,在动态扩缩容过程中⽆需移 动数据,充分保障数据的⼀致性 • 使用简单,学习成本低,⽆需额外投⼊ • 既满⾜了向量存储和向量搜索的需求,又升级 实现了云上分布式向量化计算的技术突破 • 支持多种向量搜索算法,为不同的业务场景提 供更灵活⾼效的解决⽅案 突破传统数据库的技术瓶颈 • ⽆法弹性扩缩向量化存储和计算的资源 • 在向量化计算的场景下,易用性和性能较差0 码力 | 36 页 | 4.25 MB | 1 年前3
 兼容龙蜥的云原生大模型数据计算系统:πDataCSπDataCS的第二个计算引擎 πCloudVector 计算引擎之 PieCloudVector 云原生向量数据库,为大模型提供独特记忆 PieCloudVector 竞争优势 专用向量数据库 具备向量搜索能力的云原生虚拟数仓 具备向量搜索能力的传统数据库 πCloudVector • 冗余数据、过度的数据搬运、分布式组件之间的 数据缺乏一致性 • 专业技能的额外劳动力成本、额外的许可成本 • 有限的查询语言能力、可编程性和可扩展性 打破专用向量数据库的局限性 • 统一的数据平台,在动态扩缩容过程中无需移动 数据,充分保障数据的一致性 • 使用简单,学习成本低,无需额外投入 • 既满足了向量存储和向量搜索的需求,又升级实 现了云上分布式向量化计算的技术突破 • 支持多种向量搜索算法,为不同的业务场景提供 更灵活高效的解决方案 突破传统数据库的技术瓶颈 • 无法弹性扩缩向量化存储和计算的资源 • 在向量化计算的场景下,易用性和性能较差0 码力 | 29 页 | 7.46 MB | 1 年前3 兼容龙蜥的云原生大模型数据计算系统:πDataCSπDataCS的第二个计算引擎 πCloudVector 计算引擎之 PieCloudVector 云原生向量数据库,为大模型提供独特记忆 PieCloudVector 竞争优势 专用向量数据库 具备向量搜索能力的云原生虚拟数仓 具备向量搜索能力的传统数据库 πCloudVector • 冗余数据、过度的数据搬运、分布式组件之间的 数据缺乏一致性 • 专业技能的额外劳动力成本、额外的许可成本 • 有限的查询语言能力、可编程性和可扩展性 打破专用向量数据库的局限性 • 统一的数据平台,在动态扩缩容过程中无需移动 数据,充分保障数据的一致性 • 使用简单,学习成本低,无需额外投入 • 既满足了向量存储和向量搜索的需求,又升级实 现了云上分布式向量化计算的技术突破 • 支持多种向量搜索算法,为不同的业务场景提供 更灵活高效的解决方案 突破传统数据库的技术瓶颈 • 无法弹性扩缩向量化存储和计算的资源 • 在向量化计算的场景下,易用性和性能较差0 码力 | 29 页 | 7.46 MB | 1 年前3
 PieCloudDB Database 产品白皮书 既支持用户利用过程语言自行开发模块进行数据分析也原生兼容开源机器学 习库Apache MADlib,从而可以原生实现一些高级机器学习功能。该拓展提供数学、统计学以及机器学习方法,包括 但不限于线性回归、关联规则、贝叶斯分类、决策树和随机森林等算法支持。同时 Openpie 团队经验丰富的数据科学 家团队可以为企业用户提供相关建议。 ,* 多云部署 pieCloudDB 可根据客户需求在任何laaS (裸金属服务器、虚拟机、K8S容器等)0 码力 | 17 页 | 2.68 MB | 1 年前3 PieCloudDB Database 产品白皮书 既支持用户利用过程语言自行开发模块进行数据分析也原生兼容开源机器学 习库Apache MADlib,从而可以原生实现一些高级机器学习功能。该拓展提供数学、统计学以及机器学习方法,包括 但不限于线性回归、关联规则、贝叶斯分类、决策树和随机森林等算法支持。同时 Openpie 团队经验丰富的数据科学 家团队可以为企业用户提供相关建议。 ,* 多云部署 pieCloudDB 可根据客户需求在任何laaS (裸金属服务器、虚拟机、K8S容器等)0 码力 | 17 页 | 2.68 MB | 1 年前3
 云原生虚拟数仓PieCloudDB Database产品白皮书既支持用户利用过程语言自行开发模块进行数据分析也原生兼容开源机器学 习库 Apache MADlib,从而可以原生实现一些高级机器学习功能。该拓展提供数学、统计学以及机器学习方法,包括 但不限于线性回归、关联规则、贝叶斯分类、决策树和随机森林等算法支持。同时 OpenPie 团队经验丰富的数据科学 家团队可以为企业用户提供相关建议。 10 多云部署 PieCloudDB 可根据客户需求在任何IaaS(裸金属服务器、0 码力 | 17 页 | 2.02 MB | 1 年前3 云原生虚拟数仓PieCloudDB Database产品白皮书既支持用户利用过程语言自行开发模块进行数据分析也原生兼容开源机器学 习库 Apache MADlib,从而可以原生实现一些高级机器学习功能。该拓展提供数学、统计学以及机器学习方法,包括 但不限于线性回归、关联规则、贝叶斯分类、决策树和随机森林等算法支持。同时 OpenPie 团队经验丰富的数据科学 家团队可以为企业用户提供相关建议。 10 多云部署 PieCloudDB 可根据客户需求在任何IaaS(裸金属服务器、0 码力 | 17 页 | 2.02 MB | 1 年前3
 PieCloudDB:基于PostgreSQL的eMPP云原生数据库并行执行 多个更小的 计划单元 @2022 OpenPie. All rights reserved. OpenPie Confidential 处理复杂OLAP查询 多表连接的最 优顺序搜索 多阶段聚集 分区表的静态 和动态裁剪 相关子查询的 提升转换 CTE和递归CTE 的优化 等等 @2022 OpenPie. All rights reserved. OpenPie0 码力 | 45 页 | 1.32 MB | 1 年前3 PieCloudDB:基于PostgreSQL的eMPP云原生数据库并行执行 多个更小的 计划单元 @2022 OpenPie. All rights reserved. OpenPie Confidential 处理复杂OLAP查询 多表连接的最 优顺序搜索 多阶段聚集 分区表的静态 和动态裁剪 相关子查询的 提升转换 CTE和递归CTE 的优化 等等 @2022 OpenPie. All rights reserved. OpenPie0 码力 | 45 页 | 1.32 MB | 1 年前3
 PieCloudDB 的云原生之路查询提供最优的查询计划。 • 分布式优化器 • 处理复杂 OLAP 查询 • 云原生优化器 PieCloudDB 优化器「达奇」 IvorySQL开源数据库社区 处理复杂OLAP查询 多表连接的最 优顺序搜索 多阶段聚集 分区表的静态 和动态裁剪 相关子查询的 提升转换 CTE和递归CTE 的优化 等等 IvorySQL开源数据库社区 云原生优化器 聚集下推 预计算 文件剪裁 针对云环境的特性,提供更多高阶的优化0 码力 | 47 页 | 1.80 MB | 1 年前3 PieCloudDB 的云原生之路查询提供最优的查询计划。 • 分布式优化器 • 处理复杂 OLAP 查询 • 云原生优化器 PieCloudDB 优化器「达奇」 IvorySQL开源数据库社区 处理复杂OLAP查询 多表连接的最 优顺序搜索 多阶段聚集 分区表的静态 和动态裁剪 相关子查询的 提升转换 CTE和递归CTE 的优化 等等 IvorySQL开源数据库社区 云原生优化器 聚集下推 预计算 文件剪裁 针对云环境的特性,提供更多高阶的优化0 码力 | 47 页 | 1.80 MB | 1 年前3
 PieCloudDB云原生数仓虚拟化之路PieCloudDB Optimizer @2022 OpenPie. All rights reserved. OpenPie Confidential 处理复杂OLAP查询 多表连接的最 优顺序搜索 多阶段聚集 分区表的静态 和动态裁剪 相关子查询的 提升转换 CTE和递归CTE 的优化 等等 @2022 OpenPie. All rights reserved. OpenPie0 码力 | 44 页 | 1.64 MB | 1 年前3 PieCloudDB云原生数仓虚拟化之路PieCloudDB Optimizer @2022 OpenPie. All rights reserved. OpenPie Confidential 处理复杂OLAP查询 多表连接的最 优顺序搜索 多阶段聚集 分区表的静态 和动态裁剪 相关子查询的 提升转换 CTE和递归CTE 的优化 等等 @2022 OpenPie. All rights reserved. OpenPie0 码力 | 44 页 | 1.64 MB | 1 年前3
共 10 条
- 1













