积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(14)Python(14)ORM(14)

语言

全部英语(14)

格式

全部PDF文档 PDF(7)其他文档 其他(7)
 
本次搜索耗时 0.093 秒,为您找到相关结果约 14 个.
  • 全部
  • 后端开发
  • Python
  • ORM
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • epub文档 peewee Documentation Release 2.10.2

    off basis, you can simply tell peewee to turn off auto_increment during the import: data = load_user_csv() # load up a bunch of data User._meta.auto_increment = False # turn off auto incrementing IDs with Bulk inserts recipe section for more information. Bulk inserts There are a couple of ways you can load lots of data quickly. The naive approach is to simply call Model.create() in a loop: data_source can be modified by setting the SQLITE_MAX_VARIABLE_NUMBER flag. If the data you would like to bulk load is stored in another table, you can also create INSERT queries whose source is a SELECT query. Use
    0 码力 | 275 页 | 276.96 KB | 1 年前
    3
  • pdf文档 peewee Documentation Release 2.10.2

    one-off basis, you can simply tell peewee to turn off auto_increment during the import: data = load_user_csv() # load up a bunch of data User._meta.auto_increment = False # turn off auto incrementing IDs with inserts recipe section for more information. 1.8.2 Bulk inserts There are a couple of ways you can load lots of data quickly. The naive approach is to simply call Model.create() in a loop: data_source can be modified by setting the SQLITE_MAX_VARIABLE_NUMBER flag. If the data you would like to bulk load is stored in another table, you can also create INSERT queries whose source is a SELECT query. Use
    0 码力 | 221 页 | 844.06 KB | 1 年前
    3
  • epub文档 peewee Documentation Release 3.5.0

    connection, calls function, and closes upon returning. db.create_tables(MODELS) # Create schema. load_fixture_data(db) DB-API Connection Object To obtain a reference to the underlying DB-API 2.0 connection off basis, you can simply tell peewee to turn off auto_increment during the import: data = load_user_csv() # load up a bunch of data User._meta.auto_increment = False # turn off auto incrementing IDs with to accomplish the above, without resorting to hacks, is to use the Model.insert_many() API: data = load_user_csv() fields = [User.id, User.username] with db.atomic(): User.insert_many(data, fields=fields)
    0 码力 | 347 页 | 380.80 KB | 1 年前
    3
  • pdf文档 peewee Documentation Release 3.5.0

    connection, calls function, and closes upon returning. db.create_tables(MODELS) # Create schema. load_fixture_data(db) DB-API Connection Object To obtain a reference to the underlying DB-API 2.0 connection one-off basis, you can simply tell peewee to turn off auto_increment during the import: data = load_user_csv() # load up a bunch of data User._meta.auto_increment = False # turn off auto incrementing IDs with to accomplish the above, without resorting to hacks, is to use the Model.insert_many() API: data = load_user_csv() fields = [User.id, User.username] with db.atomic(): User.insert_many(data, fields=fields)
    0 码力 | 282 页 | 1.02 MB | 1 年前
    3
  • epub文档 peewee Documentation Release 3.4.0

    Schema Creation If you downloaded the SQL file from the PostgreSQL Exercises site, then you can load the data into a PostgreSQL database using the following commands: createdb peewee_test psql -U postgres connection, calls function, and closes upon returning. db.create_tables(MODELS) # Create schema. load_fixture_data(db) DB-API Connection Object To obtain a reference to the underlying DB-API 2.0 connection off basis, you can simply tell peewee to turn off auto_increment during the import: data = load_user_csv() # load up a bunch of data User._meta.auto_increment = False # turn off auto incrementing IDs with
    0 码力 | 349 页 | 382.34 KB | 1 年前
    3
  • pdf文档 peewee Documentation Release 3.4.0

    2 Schema Creation If you downloaded the SQL file from the PostgreSQL Exercises site, then you can load the data into a PostgreSQL database using the following commands: createdb peewee_test psql -U postgres connection, calls function, and closes upon returning. db.create_tables(MODELS) # Create schema. load_fixture_data(db) DB-API Connection Object To obtain a reference to the underlying DB-API 2.0 connection one-off basis, you can simply tell peewee to turn off auto_increment during the import: data = load_user_csv() # load up a bunch of data User._meta.auto_increment = False # turn off auto incrementing IDs with
    0 码力 | 284 页 | 1.03 MB | 1 年前
    3
  • epub文档 peewee Documentation Release 3.6.0

    connection, calls function, and closes upon returning. db.create_tables(MODELS) # Create schema. load_fixture_data(db) DB-API Connection Object To obtain a reference to the underlying DB-API 2.0 connection off basis, you can simply tell peewee to turn off auto_increment during the import: data = load_user_csv() # load up a bunch of data User._meta.auto_increment = False # turn off auto incrementing IDs with to accomplish the above, without resorting to hacks, is to use the Model.insert_many() API: data = load_user_csv() fields = [User.id, User.username] with db.atomic(): User.insert_many(data, fields=fields)
    0 码力 | 377 页 | 399.12 KB | 1 年前
    3
  • pdf文档 peewee Documentation Release 3.6.0

    connection, calls function, and closes upon returning. db.create_tables(MODELS) # Create schema. load_fixture_data(db) DB-API Connection Object To obtain a reference to the underlying DB-API 2.0 connection one-off basis, you can simply tell peewee to turn off auto_increment during the import: data = load_user_csv() # load up a bunch of data User._meta.auto_increment = False # turn off auto incrementing IDs with the Model.insert_many() API: 1.6. Models and Fields 57 peewee Documentation, Release 3.6.0 data = load_user_csv() fields = [User.id, User.username] with db.atomic(): User.insert_many(data, fields=fields)
    0 码力 | 302 页 | 1.02 MB | 1 年前
    3
  • epub文档 peewee Documentation Release 3.1.0

    Schema Creation If you downloaded the SQL file from the PostgreSQL Exercises site, then you can load the data into a PostgreSQL database using the following commands: createdb peewee_test psql -U postgres connection, calls function, and closes upon returning. db.create_tables(MODELS) # Create schema. load_fixture_data(db) DB-API Connection Object To obtain a reference to the underlying DB-API 2.0 connection off basis, you can simply tell peewee to turn off auto_increment during the import: data = load_user_csv() # load up a bunch of data User._meta.auto_increment = False # turn off auto incrementing IDs with
    0 码力 | 332 页 | 370.77 KB | 1 年前
    3
  • pdf文档 peewee Documentation Release 3.3.0

    2 Schema Creation If you downloaded the SQL file from the PostgreSQL Exercises site, then you can load the data into a PostgreSQL database using the following commands: createdb peewee_test psql -U postgres connection, calls function, and closes upon returning. db.create_tables(MODELS) # Create schema. load_fixture_data(db) DB-API Connection Object To obtain a reference to the underlying DB-API 2.0 connection one-off basis, you can simply tell peewee to turn off auto_increment during the import: data = load_user_csv() # load up a bunch of data User._meta.auto_increment = False # turn off auto incrementing IDs with
    0 码力 | 280 页 | 1.02 MB | 1 年前
    3
共 14 条
  • 1
  • 2
前往
页
相关搜索词
peeweeDocumentationRelease2.103.53.43.63.13.3
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩