积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(16)Python(16)ORM(16)

语言

全部英语(16)

格式

全部PDF文档 PDF(8)其他文档 其他(8)
 
本次搜索耗时 0.059 秒,为您找到相关结果约 16 个.
  • 全部
  • 后端开发
  • Python
  • ORM
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • epub文档 peewee Documentation Release 0.9.7

    DateTimeField() peewee supports a handful of field types which map to different column types in sqlite. Conversion between python and the database is handled transparently, including the proper handling of None/NULL TextField() # <-- TEXT pub_date = DateTimeField() # <-- DATETIME blog = ForeignKeyField() # <-- INTEGER referencing the Blog table This is a typical example of how to specify models with peewee. There database columns. Each field type has a corresponding SQL storage class (i.e. varchar, int), and conversion between python data types and underlying storage is handled transparently. When creating a Model
    0 码力 | 78 页 | 143.68 KB | 1 年前
    3
  • pdf文档 peewee Documentation Release 0.9.7

    DateTimeField() peewee supports a handful of field types which map to different column types in sqlite. Conversion between python and the database is handled transparently, including the proper handling of None/NULL Documentation, Release 0.9.7 pub_date = DateTimeField() # <-- DATETIME blog = ForeignKeyField() # <-- INTEGER referencing the Blog table This is a typical example of how to specify models with peewee. There database columns. Each field type has a corresponding SQL storage class (i.e. varchar, int), and conversion between python data types and underlying storage is handled transparently. When creating a Model
    0 码力 | 53 页 | 347.03 KB | 1 年前
    3
  • pdf文档 peewee Documentation Release 2.0.2

    fields and columns Well, for one, columns are gone. They were a shim that I used to hack in non-integer primary keys. I always thought the field SQL generation was one of the grosser parts of the module primary key and it is a PrimaryKeyField (or subclass), it will be an automatically incrementing integer • if you specify a primary key and it is anything else peewee assumes you are in control and will create(username=’somebody’) db.commit() 1.4.4 Non-integer Primary Keys and other Tricks Non-integer primary keys If you would like use a non-integer primary key (which I generally don’t recommend), you
    0 码力 | 65 页 | 315.33 KB | 1 年前
    3
  • epub文档 peewee Documentation Release 1.0.0

    Model methods Fields Field types table Self-referential Foreign Keys Implementing Many to Many Non-integer Primary Keys Field class API Querying API Constructing queries Where clause Performing advanced DateTimeField() peewee supports a handful of field types which map to different column types in sqlite. Conversion between python and the database is handled transparently, including the proper handling of None/NULL TextField() # <-- TEXT pub_date = DateTimeField() # <-- DATETIME blog = ForeignKeyField(Blog) # <-- INTEGER referencing the Blog table This is a typical example of how to specify models with peewee. There
    0 码力 | 101 页 | 163.20 KB | 1 年前
    3
  • pdf文档 peewee Documentation Release 1.0.0

    1.0.0 peewee supports a handful of field types which map to different column types in sqlite. Conversion between python and the database is handled transparently, including the proper handling of None/NULL TextField() # <-- TEXT pub_date = DateTimeField() # <-- DATETIME blog = ForeignKeyField(Blog) # <-- INTEGER referencing the Blog table This is a typical example of how to specify models with peewee. There database columns. Each field type has a corresponding SQL storage class (i.e. varchar, int), and conversion between python data types and underlying storage is handled transparently. When creating a Model
    0 码力 | 71 页 | 405.29 KB | 1 年前
    3
  • epub文档 peewee Documentation Release 3.5.0

    Fields Fields Creating model tables Model options and table metadata Indexes and Constraints Non-integer Primary Keys, Composite Keys and other Tricks Self-referential foreign keys Circular foreign key different field types which map to different column types commonly supported by database engines. Conversion between python types and those used in the database is handled transparently, allowing you to use Because we have not specified a primary key, peewee will automatically add an auto-incrementing integer primary key field named id. Note If you would like to start using peewee with an existing database
    0 码力 | 347 页 | 380.80 KB | 1 年前
    3
  • epub文档 peewee Documentation Release 3.4.0

    Field-naming conflicts Creating model tables Model options and table metadata Indexes and Constraints Non-integer Primary Keys, Composite Keys and other Tricks Self-referential foreign keys Circular foreign key different field types which map to different column types commonly supported by database engines. Conversion between python types and those used in the database is handled transparently, allowing you to use Because we have not specified a primary key, peewee will automatically add an auto-incrementing integer primary key field named id. Note If you would like to start using peewee with an existing database
    0 码力 | 349 页 | 382.34 KB | 1 年前
    3
  • pdf文档 peewee Documentation Release 3.5.0

    different field types which map to different column types commonly supported by database engines. Conversion between python types and those used in the database is handled transparently, allowing you to use Because we have not specified a primary key, peewee will automatically add an auto-incrementing integer primary key field named id. Note: If you would like to start using peewee with an existing database database columns. Each field type has a corresponding SQL storage class (i.e. varchar, int), and conversion between python data types and underlying storage is handled transparently. When creating a Model
    0 码力 | 282 页 | 1.02 MB | 1 年前
    3
  • pdf文档 peewee Documentation Release 3.3.0

    different field types which map to different column types commonly supported by database engines. Conversion between python types and those used in the database is handled transparently, allowing you to use Because we have not specified a primary key, peewee will automatically add an auto-incrementing integer primary key field named id. Note: If you would like to start using peewee with an existing database database columns. Each field type has a corresponding SQL storage class (i.e. varchar, int), and conversion between python data types and underlying storage is handled transparently. When creating a Model
    0 码力 | 280 页 | 1.02 MB | 1 年前
    3
  • pdf文档 peewee Documentation Release 3.4.0

    different field types which map to different column types commonly supported by database engines. Conversion between python types and those used in the database is handled transparently, allowing you to use Because we have not specified a primary key, peewee will automatically add an auto-incrementing integer primary key field named id. Note: If you would like to start using peewee with an existing database database columns. Each field type has a corresponding SQL storage class (i.e. varchar, int), and conversion between python data types and underlying storage is handled transparently. When creating a Model
    0 码力 | 284 页 | 1.03 MB | 1 年前
    3
共 16 条
  • 1
  • 2
前往
页
相关搜索词
peeweeDocumentationRelease0.92.01.03.53.43.3
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩