积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(16)Python(16)ORM(16)

语言

全部英语(16)

格式

全部PDF文档 PDF(8)其他文档 其他(8)
 
本次搜索耗时 0.098 秒,为您找到相关结果约 16 个.
  • 全部
  • 后端开发
  • Python
  • ORM
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • epub文档 peewee Documentation Release 2.10.2

    Bulk inserts Updating existing records Atomic updates Deleting records Selecting a single record Create or get Selecting multiple records Filtering records Sorting records Getting random records Paginating Fields Generic foreign keys Hybrid Attributes Key/Value Store Shortcuts Signal support pwiz, a model generator Schema Migrations Reflection Database URL CSV Utils Connection pool Read Slaves Test Utils pskel database that will store our data. This will create the tables with the appropriate columns, indexes, sequences, and foreign key constraints: >>> db.create_tables([Person, Pet]) Storing data Let’s begin
    0 码力 | 275 页 | 276.96 KB | 1 年前
    3
  • pdf文档 peewee Documentation Release 2.10.2

    database that will store our data. This will create the tables with the appropriate columns, indexes, sequences, and foreign key constraints: >>> db.create_tables([Person, Pet]) 1.2.2 Storing data Let’s Let’s begin by populating the database with some people. We will use the save() and create() methods to add and update people’s records. >>> from datetime import date >>> uncle_bob = Person(name='Bob' person by calling the create() method, which returns a model instance: >>> grandma = Person.create(name='Grandma', birthday=date(1935, 3, 1), is_ ˓→relative=True) >>> herb = Person.create(name='Herb', birthday=date(1950
    0 码力 | 221 页 | 844.06 KB | 1 年前
    3
  • epub文档 peewee Documentation Release 3.0.0

    Bulk inserts Updating existing records Atomic updates Deleting records Selecting a single record Create or get Selecting multiple records Filtering records Sorting records Getting random records Paginating backend Postgresql Extensions DataSet Fields Hybrid Attributes Shortcuts Signal support pwiz, a model generator Schema Migrations Reflection Database URL Connection pool Test Utils Flask Utils Query Builder options, use: python runtests.py --help Note To run tests against Postgres or MySQL you need to create a database named “peewee_test”. To test the Postgres extension module, you will also want to install
    0 码力 | 319 页 | 361.50 KB | 1 年前
    3
  • epub文档 peewee Documentation Release 3.4.0

    Bulk inserts Updating existing records Atomic updates Deleting records Selecting a single record Create or get Selecting multiple records Filtering records Sorting records Getting random records Paginating Extensions DataSet Fields Hybrid Attributes Key/Value Store Shortcuts Signal support pwiz, a model generator Schema Migrations Reflection Database URL Connection pool Test Utils Flask Utils Query Builder options, use: python runtests.py --help Note To run tests against Postgres or MySQL you need to create a database named “peewee_test”. To test the Postgres extension module, you will also want to install
    0 码力 | 349 页 | 382.34 KB | 1 年前
    3
  • epub文档 peewee Documentation Release 3.5.0

    Bulk inserts Updating existing records Atomic updates Deleting records Selecting a single record Create or get Selecting multiple records Filtering records Sorting records Getting random records Paginating Extensions DataSet Fields Hybrid Attributes Key/Value Store Shortcuts Signal support pwiz, a model generator Schema Migrations Reflection Database URL Connection pool Test Utils Flask Utils Query Examples options, use: python runtests.py --help Note To run tests against Postgres or MySQL you need to create a database named “peewee_test”. To test the Postgres extension module, you will also want to install
    0 码力 | 347 页 | 380.80 KB | 1 年前
    3
  • epub文档 peewee Documentation Release 3.1.0

    Bulk inserts Updating existing records Atomic updates Deleting records Selecting a single record Create or get Selecting multiple records Filtering records Sorting records Getting random records Paginating backend Postgresql Extensions DataSet Fields Hybrid Attributes Shortcuts Signal support pwiz, a model generator Schema Migrations Reflection Database URL Connection pool Test Utils Flask Utils Query Builder options, use: python runtests.py --help Note To run tests against Postgres or MySQL you need to create a database named “peewee_test”. To test the Postgres extension module, you will also want to install
    0 码力 | 332 页 | 370.77 KB | 1 年前
    3
  • epub文档 peewee Documentation Release 3.6.0

    Bulk inserts Updating existing records Atomic updates Deleting records Selecting a single record Create or get Selecting multiple records Filtering records Sorting records Getting random records Paginating Extensions DataSet Fields Hybrid Attributes Key/Value Store Shortcuts Signal support pwiz, a model generator Schema Migrations Reflection Database URL Connection pool Test Utils Flask Utils Query Examples options, use: python runtests.py --help Note To run tests against Postgres or MySQL you need to create a database named “peewee_test”. To test the Postgres extension module, you will also want to install
    0 码力 | 377 页 | 399.12 KB | 1 年前
    3
  • pdf文档 peewee Documentation Release 3.4.0

    options, use: python runtests.py --help Note: To run tests against Postgres or MySQL you need to create a database named “peewee_test”. To test the Postgres extension module, you will also want to install extension in the postgres test database: -- install the hstore extension on the peewee_test postgres db. CREATE EXTENSION hstore; 1.1.3 Optional dependencies Note: To use Peewee, you typically won’t need anything the database that will store our data. This will create the tables with the appropriate columns, indexes, sequences, and foreign key constraints: db.create_tables([Person, Pet]) 1.2.2 Storing data Let’s
    0 码力 | 284 页 | 1.03 MB | 1 年前
    3
  • pdf文档 peewee Documentation Release 3.3.0

    options, use: python runtests.py --help Note: To run tests against Postgres or MySQL you need to create a database named “peewee_test”. To test the Postgres extension module, you will also want to install extension in the postgres test database: -- install the hstore extension on the peewee_test postgres db. CREATE EXTENSION hstore; 1.1.3 Optional dependencies Note: To use Peewee, you typically won’t need anything the database that will store our data. This will create the tables with the appropriate columns, indexes, sequences, and foreign key constraints: db.create_tables([Person, Pet]) 1.2.2 Storing data Let’s
    0 码力 | 280 页 | 1.02 MB | 1 年前
    3
  • pdf文档 peewee Documentation Release 3.5.0

    options, use: python runtests.py --help Note: To run tests against Postgres or MySQL you need to create a database named “peewee_test”. To test the Postgres extension module, you will also want to install extension in the postgres test database: -- install the hstore extension on the peewee_test postgres db. CREATE EXTENSION hstore; 1.1.3 Optional dependencies Note: To use Peewee, you typically won’t need anything the database that will store our data. This will create the tables with the appropriate columns, indexes, sequences, and foreign key constraints: db.create_tables([Person, Pet]) 1.2.2 Storing data Let’s
    0 码力 | 282 页 | 1.02 MB | 1 年前
    3
共 16 条
  • 1
  • 2
前往
页
相关搜索词
peeweeDocumentationRelease2.103.03.43.53.13.63.3
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩