 蔡岳毅-基于ClickHouse+StarRocks构建支撑千亿级数据量的高可用查询引擎全球敏捷运维峰会 广州站 基于ClickHouse+StarRocks 构建支撑千亿级数据量的高可用查询引擎 演讲人:蔡岳毅 全球敏捷运维峰会 广州站 1. 为什么选择ClickHouse/StarRocks; 2. ClickHouse/StarRocks的高可用架构; 3. 如何合理的应用ClickHouse的优点,StarRocks 如何来补充ClickHouse 的短板; 的特点 优点: 1. 数据压缩比高,存储成本相对非常低; 2. 支持常用的SQL语法,写入速度非常快,适用于大量的数据更新; 3. 依赖稀疏索引,列式存储,cpu/内存的充分利用造就了优秀的计算能力, 并且不用考虑左侧原则; 缺点: 1. 不支持事务,没有真正的update/delete; 2. 不支持高并发,可以根据实际情况修改qps相关配置文件; 全球敏捷运维峰会 广州站0 码力 | 15 页 | 1.33 MB | 1 年前3 蔡岳毅-基于ClickHouse+StarRocks构建支撑千亿级数据量的高可用查询引擎全球敏捷运维峰会 广州站 基于ClickHouse+StarRocks 构建支撑千亿级数据量的高可用查询引擎 演讲人:蔡岳毅 全球敏捷运维峰会 广州站 1. 为什么选择ClickHouse/StarRocks; 2. ClickHouse/StarRocks的高可用架构; 3. 如何合理的应用ClickHouse的优点,StarRocks 如何来补充ClickHouse 的短板; 的特点 优点: 1. 数据压缩比高,存储成本相对非常低; 2. 支持常用的SQL语法,写入速度非常快,适用于大量的数据更新; 3. 依赖稀疏索引,列式存储,cpu/内存的充分利用造就了优秀的计算能力, 并且不用考虑左侧原则; 缺点: 1. 不支持事务,没有真正的update/delete; 2. 不支持高并发,可以根据实际情况修改qps相关配置文件; 全球敏捷运维峰会 广州站0 码力 | 15 页 | 1.33 MB | 1 年前3
 2. 腾讯 clickhouse实践 _2019丁晓坤&熊峰一切以用户价值为依归 业务应用实践 iData 14 2 一切以用户价值为依归 15 业务应用实践 iData 2 一切以用户价值为依归 l 游戏数据分析的业务背景 l iData 数据分析引擎TGMars l 为什么选用ClickHouse l 平台在ClickHouse上的使用 16 业务应用实践 iData 2 腾讯游戏 数据化驱动服务 场景视图: TGlog 服务端采集 iData 2 新大数据分析引擎2.0 业界传统 大数据分析 引擎 大数据分析引擎&存储 Analytical Engine & Database 大数据仓库 Hadoop Data Lake 计算引擎 MR & Spark Data Warehouse OLTP Big Data Analysis 数据报表 多 维 聚 合 iData大数据分析引擎 TGMars TGSpark Lake 计算引擎 MR & Spark Data Warehouse OLTP Big Data Analysis 多 维 聚 合 iData New 超融合OLAP 大数据分析 引擎TGMars 多 维 提 取 关 联 分 析 画 像 分 析 数据报表 用户分群 用户特征 特征关联 一切以用户价值为依归 18 业务应用实践 iData 2 新大数据分析引擎2.00 码力 | 26 页 | 3.58 MB | 1 年前3 2. 腾讯 clickhouse实践 _2019丁晓坤&熊峰一切以用户价值为依归 业务应用实践 iData 14 2 一切以用户价值为依归 15 业务应用实践 iData 2 一切以用户价值为依归 l 游戏数据分析的业务背景 l iData 数据分析引擎TGMars l 为什么选用ClickHouse l 平台在ClickHouse上的使用 16 业务应用实践 iData 2 腾讯游戏 数据化驱动服务 场景视图: TGlog 服务端采集 iData 2 新大数据分析引擎2.0 业界传统 大数据分析 引擎 大数据分析引擎&存储 Analytical Engine & Database 大数据仓库 Hadoop Data Lake 计算引擎 MR & Spark Data Warehouse OLTP Big Data Analysis 数据报表 多 维 聚 合 iData大数据分析引擎 TGMars TGSpark Lake 计算引擎 MR & Spark Data Warehouse OLTP Big Data Analysis 多 维 聚 合 iData New 超融合OLAP 大数据分析 引擎TGMars 多 维 提 取 关 联 分 析 画 像 分 析 数据报表 用户分群 用户特征 特征关联 一切以用户价值为依归 18 业务应用实践 iData 2 新大数据分析引擎2.00 码力 | 26 页 | 3.58 MB | 1 年前3
 4. ClickHouse在苏宁用户画像场景的实践3. 软件质量高 4. 物化视图 5. 高基数查询 6. 精确去重计数(count distinct) 3 精确去重计数性能测试 4亿多的数据集上,去重计算出6千万整形数值, 非精确去重函数:uniq、uniqHLL12、uniqCombined 精确去重函数:uniqExact、groupBitmap 函数 时长(秒) 去重后个数 误差个数 精确去重计数性能测试 6 ClickHouse在苏宁使用场景  OLAP平台存储引擎 -- 存储时序数据、cube加速数据,应用亍高基数查询、精确去重场景。  运维监控 -- 实时聚合分析监控数据,主要使用物化视图技术。  用户画像场景 -- 标签数据的存储、用户画像查询引擎。 7 Contents 苏宁如何使用ClickHouse ClickHouse集成Bitmap ClickHouse集成Bitmap 用户画像场景实践 8 Bitmap位存储和位计算 每个bit位表示一个数字id,对亍40亿个的用户id,只需要40亿bit位, 约477m大小 = (4 * 109 / 8 / 1024 / 1024) 但是如果使用上述的数据结构存储单独一个较大数值的数字id,会造成空间上的浪费,例如 仅存储40亿一个数值也需要477m的空间。也就是说稀疏的Bitmap和稠密的占用空间相0 码力 | 32 页 | 1.47 MB | 1 年前3 4. ClickHouse在苏宁用户画像场景的实践3. 软件质量高 4. 物化视图 5. 高基数查询 6. 精确去重计数(count distinct) 3 精确去重计数性能测试 4亿多的数据集上,去重计算出6千万整形数值, 非精确去重函数:uniq、uniqHLL12、uniqCombined 精确去重函数:uniqExact、groupBitmap 函数 时长(秒) 去重后个数 误差个数 精确去重计数性能测试 6 ClickHouse在苏宁使用场景  OLAP平台存储引擎 -- 存储时序数据、cube加速数据,应用亍高基数查询、精确去重场景。  运维监控 -- 实时聚合分析监控数据,主要使用物化视图技术。  用户画像场景 -- 标签数据的存储、用户画像查询引擎。 7 Contents 苏宁如何使用ClickHouse ClickHouse集成Bitmap ClickHouse集成Bitmap 用户画像场景实践 8 Bitmap位存储和位计算 每个bit位表示一个数字id,对亍40亿个的用户id,只需要40亿bit位, 约477m大小 = (4 * 109 / 8 / 1024 / 1024) 但是如果使用上述的数据结构存储单独一个较大数值的数字id,会造成空间上的浪费,例如 仅存储40亿一个数值也需要477m的空间。也就是说稀疏的Bitmap和稠密的占用空间相0 码力 | 32 页 | 1.47 MB | 1 年前3
 2. Clickhouse玩转每天千亿数据-趣头条集群现状 • 我们遇到的问题 业务背景 基于storm的实时指标的计算存在的问题 1:指标口径(SQL) -> 实时任务 2:数据的回溯 3:稳定性 业务背景 什么是我们需要的? 1:实时指标SQL化 2:数据方便回溯,数据有问题,方便恢复 3:运维需要简单 4:计算要快,在一个周期内,要完成所有的指标的计算 集群现状 100+台32核128G 部分复杂累时查询30S内完成 timestamp<='' and eventType='' 建表的时候缺乏深度思考,由于分时指标的特性,我们的表是order by (timestamp, eventType)进行索引 的,这样在计算累时指标的时候出现非常耗时(600亿+数据量) 分析: 对于累时数据,时间索引基本就失效了,由于timestamp”基数”比较高,对于排在第二位eventType索引, 这个时候对数据的过滤就非常 (这个时候snapshot文件到达2G+) 3.2:注意监控zookeeper的指标(排队请求?处理延迟?等等),排队请求太多可能会导致插入失败 我们遇到的问题 关于引擎选择 推荐Replicated*MergeTree引擎 1:安全,数据安全,业务安全 2:升级的时候可以做到业务无感知 3:提升查询的并发度 广告时间0 码力 | 14 页 | 1.10 MB | 1 年前3 2. Clickhouse玩转每天千亿数据-趣头条集群现状 • 我们遇到的问题 业务背景 基于storm的实时指标的计算存在的问题 1:指标口径(SQL) -> 实时任务 2:数据的回溯 3:稳定性 业务背景 什么是我们需要的? 1:实时指标SQL化 2:数据方便回溯,数据有问题,方便恢复 3:运维需要简单 4:计算要快,在一个周期内,要完成所有的指标的计算 集群现状 100+台32核128G 部分复杂累时查询30S内完成 timestamp<='' and eventType='' 建表的时候缺乏深度思考,由于分时指标的特性,我们的表是order by (timestamp, eventType)进行索引 的,这样在计算累时指标的时候出现非常耗时(600亿+数据量) 分析: 对于累时数据,时间索引基本就失效了,由于timestamp”基数”比较高,对于排在第二位eventType索引, 这个时候对数据的过滤就非常 (这个时候snapshot文件到达2G+) 3.2:注意监控zookeeper的指标(排队请求?处理延迟?等等),排队请求太多可能会导致插入失败 我们遇到的问题 关于引擎选择 推荐Replicated*MergeTree引擎 1:安全,数据安全,业务安全 2:升级的时候可以做到业务无感知 3:提升查询的并发度 广告时间0 码力 | 14 页 | 1.10 MB | 1 年前3
 6. ClickHouse在众安的实践什么是最佳决策? 分析性数据仓库 数据洞察与可视化 数据治理 预测分析与机器学习 CHAPTER 众安集智平台与clickhouse 02 集智平台 X-Brain AI 开放平台 计算框架 Hadoop, JStorm, Spark Streaming, Flink 离线/实时任务监控 数据、模型存储 Hive, HBase, Clickhouse, Kylin 数据接入 Clickhouse? Clickhosue 性能 高效的数据导入和查询性能 开源 低成本,免费 压缩比 高度的数据压缩比,存储成本更小 面向列 真正的面向列存储, 支持高维度表 易观开源OLAP引擎测评报告 洞察数据模型+Clickhouse 使用效果 CHAPTER 使用ck对百亿数据的探索 03 背景 我们希望对保单、用户数据进行灵活分析,根据用户标签筛选出符合 要求的客户进行精准营销。 不灵活:用户有新标签需求时,需要提需求给标签开发人员排期开发 需求,开发人员开发完再更新到系统中,这时离需求提出可能已经过 去几天,无法及时给到业务人员反馈。 思路 利用clickhouse实时计算的高效性能,对原始数据进行查询分析,从而支 持用户灵活的定义标签并让用户实时得到反馈。 标签平台 clickhouse 保单表 用户表 用户行为表 数据 • 历史保单数据 join 用户数据0 码力 | 28 页 | 4.00 MB | 1 年前3 6. ClickHouse在众安的实践什么是最佳决策? 分析性数据仓库 数据洞察与可视化 数据治理 预测分析与机器学习 CHAPTER 众安集智平台与clickhouse 02 集智平台 X-Brain AI 开放平台 计算框架 Hadoop, JStorm, Spark Streaming, Flink 离线/实时任务监控 数据、模型存储 Hive, HBase, Clickhouse, Kylin 数据接入 Clickhouse? Clickhosue 性能 高效的数据导入和查询性能 开源 低成本,免费 压缩比 高度的数据压缩比,存储成本更小 面向列 真正的面向列存储, 支持高维度表 易观开源OLAP引擎测评报告 洞察数据模型+Clickhouse 使用效果 CHAPTER 使用ck对百亿数据的探索 03 背景 我们希望对保单、用户数据进行灵活分析,根据用户标签筛选出符合 要求的客户进行精准营销。 不灵活:用户有新标签需求时,需要提需求给标签开发人员排期开发 需求,开发人员开发完再更新到系统中,这时离需求提出可能已经过 去几天,无法及时给到业务人员反馈。 思路 利用clickhouse实时计算的高效性能,对原始数据进行查询分析,从而支 持用户灵活的定义标签并让用户实时得到反馈。 标签平台 clickhouse 保单表 用户表 用户行为表 数据 • 历史保单数据 join 用户数据0 码力 | 28 页 | 4.00 MB | 1 年前3
 2. ClickHouse MergeTree原理解析-朱凯数据标记 04 / 表引擎 表引擎,是ClickHouse设计实现中的一大特色。可以说正是由表引擎,决定了一张 数据表最终的性格,它拥有何种特性、数据以何种形式被存储以及如何被加载。 ClickHouse拥有非常庞大的表引擎体系,截至到目前(19.14.6),共拥有合并树、 内存、文件、接口和其他5大类20多种。 合并树 这众多的表引擎中,又属合并树(MergeTree)表引擎及其家族系列(*MergeTree)最 为强大,在生产环境绝大部分场景中都应该使用此系列的表引擎。 只有合并树系列的表引擎才支持主键索引、数据分区、数据副本和数据采样这些特 性,同时也只有此系列的表引擎支持ALTER相关操作。 合并树家族 其中MergeTree作为家族中最基础的表引擎,提供了主键索引、数据分区、数据副 本和数据采样等所有的基本能力,而家族中其他的表引擎则在MergeTree的基础之 上各有所长。 MergeTree的名称由来0 码力 | 35 页 | 13.25 MB | 1 年前3 2. ClickHouse MergeTree原理解析-朱凯数据标记 04 / 表引擎 表引擎,是ClickHouse设计实现中的一大特色。可以说正是由表引擎,决定了一张 数据表最终的性格,它拥有何种特性、数据以何种形式被存储以及如何被加载。 ClickHouse拥有非常庞大的表引擎体系,截至到目前(19.14.6),共拥有合并树、 内存、文件、接口和其他5大类20多种。 合并树 这众多的表引擎中,又属合并树(MergeTree)表引擎及其家族系列(*MergeTree)最 为强大,在生产环境绝大部分场景中都应该使用此系列的表引擎。 只有合并树系列的表引擎才支持主键索引、数据分区、数据副本和数据采样这些特 性,同时也只有此系列的表引擎支持ALTER相关操作。 合并树家族 其中MergeTree作为家族中最基础的表引擎,提供了主键索引、数据分区、数据副 本和数据采样等所有的基本能力,而家族中其他的表引擎则在MergeTree的基础之 上各有所长。 MergeTree的名称由来0 码力 | 35 页 | 13.25 MB | 1 年前3
 3. 数仓ClickHouse多维分析应用实践-朱元clickhouse数据库 数 仓 建 设 01 ck数仓数据模型采用星型模型搭建 02 数 仓 建 设 – 维度表 一般维度表数据量不大. 目前采用的是引擎Log+字典表(dictionary) 数 仓 建 设 – 主题事实清单表 主题事实清单表采用引擎MergeTree. 同步策略: 每日从 oracle数据平台增量同步到ck数仓. 数 仓 建 设 – 对外数据 目前对外开放是主题事实清单表+维度表0 码力 | 14 页 | 3.03 MB | 1 年前3 3. 数仓ClickHouse多维分析应用实践-朱元clickhouse数据库 数 仓 建 设 01 ck数仓数据模型采用星型模型搭建 02 数 仓 建 设 – 维度表 一般维度表数据量不大. 目前采用的是引擎Log+字典表(dictionary) 数 仓 建 设 – 主题事实清单表 主题事实清单表采用引擎MergeTree. 同步策略: 每日从 oracle数据平台增量同步到ck数仓. 数 仓 建 设 – 对外数据 目前对外开放是主题事实清单表+维度表0 码力 | 14 页 | 3.03 MB | 1 年前3
 ClickHouse在B站海量数据场景的落地实践不同事件有不同的私有属性字段。 v 动态选择的过滤维度和聚合维度。 v 交互式分析延迟要求 (5秒内)。 路径分析 v 选定中⼼事件。 v 按时间窗⼜确定上下游事件。 v 离线Spark与计算出事件路径及相关⽤户id的RBM。 v 离线计算结果导⼊ClickHouse做交互式路径分析。 漏斗分析 v 预定义事件漏⽃ v ⽀持各个事件单独设置过滤条件 v 查询时间跨度最⼤⼀个⽉ v 数据按user id做Sharding,查询下推 v ClickHouse集群容器化,提升物理集群资源使⽤率 v ClickHouse倒排索引调研与改造,提升⽇志检索性能 v 丰富ClickHouse编码类型,拓展zorder应⽤场景,提升圈选计算性能 v ClickHouse存算分离探索,降低集群扩容成本 Q&A0 码力 | 26 页 | 2.15 MB | 1 年前3 ClickHouse在B站海量数据场景的落地实践不同事件有不同的私有属性字段。 v 动态选择的过滤维度和聚合维度。 v 交互式分析延迟要求 (5秒内)。 路径分析 v 选定中⼼事件。 v 按时间窗⼜确定上下游事件。 v 离线Spark与计算出事件路径及相关⽤户id的RBM。 v 离线计算结果导⼊ClickHouse做交互式路径分析。 漏斗分析 v 预定义事件漏⽃ v ⽀持各个事件单独设置过滤条件 v 查询时间跨度最⼤⼀个⽉ v 数据按user id做Sharding,查询下推 v ClickHouse集群容器化,提升物理集群资源使⽤率 v ClickHouse倒排索引调研与改造,提升⽇志检索性能 v 丰富ClickHouse编码类型,拓展zorder应⽤场景,提升圈选计算性能 v ClickHouse存算分离探索,降低集群扩容成本 Q&A0 码力 | 26 页 | 2.15 MB | 1 年前3
共 8 条
- 1













