积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(15)ClickHouse(15)

语言

全部英语(9)俄语(3)中文(简体)(3)

格式

全部PDF文档 PDF(14)PPT文档 PPT(1)
 
本次搜索耗时 0.014 秒,为您找到相关结果约 15 个.
  • 全部
  • 数据库
  • ClickHouse
  • 全部
  • 英语
  • 俄语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 ClickHouse on Kubernetes

    deployment on AWS configures external ingress. clickhouse-client --host $AWS_ELB_HOST_NAME Replication requires Zookeeper Install minimal Zookeeper in separate namespace. kubectl create ns zoons
    0 码力 | 34 页 | 5.06 MB | 1 年前
    3
  • pdf文档 ClickHouse on Kubernetes

    deployment on AWS configures external ingress. clickhouse-client --host $AWS_ELB_HOST_NAME Replication requires Zookeeper to be enabled Install minimal Zookeeper in separate namespace. kubectl
    0 码力 | 29 页 | 3.87 MB | 1 年前
    3
  • pdf文档 ClickHouse in Production

    countIf(CounterType='Show') as SumShows, countIf(CounterType='Click') as SumClicks, BannerID FROM EventLogHDFS GROUP BY BannerID ORDER BY SumClicks desc LIMIT 3; 52 / 97 In ClickHouse: Most Clicked Banner SELECT countIf(CounterType='Show') as SumShows, countIf(CounterType='Click') as SumClicks, BannerID FROM EventLogHDFS GROUP BY BannerID ORDER BY SumClicks desc LIMIT 3; ┌─SumShows─┬─SumClicks─┬───BannerID─┐ │ 6485 │ 1015 countIf(CounterType='Show') as SumShows, countIf(CounterType='Click') as SumClicks, BannerID FROM EventLogLocal GROUP BY BannerID ORDER BY SumClicks desc LIMIT 3; 55 / 97 In ClickHouse: Query Local Copy SELECT c
    0 码力 | 100 页 | 6.86 MB | 1 年前
    3
  • ppt文档 Что нужно знать об архитектуре ClickHouse, чтобы его эффективно использовать

    неделю. SELECT Referer, count(*) AS count FROM hits WHERE CounterID = 1234 AND Date >= today() - 7 GROUP BY Referer ORDER BY count DESC LIMIT 10 Типичный запрос в системе веб-аналитики Быстро читаем Distributed таблицы CSV 227 Gb, ~1.3 млрд строк SELECT passenger_count, avg(total_amount) FROM trips GROUP BY passenger_count NYC taxi benchmark Шардов 1 3 140 Время, с. 1,224 0,438 0,043 Ускорени е x2 https://t.me/clickhouse_ru › GitHub: https://github.com/yandex/ClickHouse/ › Google group: https://groups.google.com/group/clickhouse Спасибо
    0 码力 | 28 页 | 506.94 KB | 1 年前
    3
  • pdf文档 5. ClickHouse at Ximalaya for Shanghai Meetup 2019 PDF

    timestamps, arrayEnumerate(pages) as index FROM (SELECT * FROM client_log_all ORDER BY timestamp) GROUP BY user ����������������� ���������� SELECT user, groupArray(page) as pages, groupArray(timestamp) pages[i+2]='Order'), index, pages) as level_3 FROM (SELECT * FROM client_log_all ORDER BY timestamp) GROUP BY user • ����������������������������������������������������������������������� ����������������� 'Order' ), sortedPages, nextSortedPages, nextNextSortedPages) as level_2 … FROM client_log_all GROUP BY user • �������������� ������������������������������� �������� ������ ������ ���� ���� � �������
    0 码力 | 28 页 | 6.87 MB | 1 年前
    3
  • pdf文档 1. Machine Learning with ClickHouse

    query SELECT cab_type, simpleLinearRegression(trip_distance, total_amount) FROM trips WHERE <...> GROUP BY cab_type ┌─cab_type─┬─simpleLinearRegression(trip_distance, total_amount)─┐ │ yellow │ (2.4343401638740527 toYear(pickup_datetime) AS y, simpleLinearRegression(trip_distance, total_amount) FROM trips WHERE <...> GROUP BY y ┌────y─┬─simpleLinearRegression(trip_distance, total_amount)─┐ │ 2009 │ (2.553562453857034,3 year, stochasticLinearRegressionState(total_amount, trip_distance) AS model FROM trips WHERE <...> GROUP BY year Ok. 39 / 62 Apply several trained models SELECT evalMLMethod(model, trip_distance), total_amount
    0 码力 | 64 页 | 1.38 MB | 1 年前
    3
  • pdf文档 0. Machine Learning with ClickHouse

    query SELECT cab_type, simpleLinearRegression(trip_distance, total_amount) FROM trips WHERE <...> GROUP BY cab_type ┌─cab_type─┬─simpleLinearRegression(trip_distance, total_amount)─┐ │ yellow │ (2.4343401638740527 toYear(pickup_datetime) AS y, simpleLinearRegression(trip_distance, total_amount) FROM trips WHERE <...> GROUP BY y ┌────y─┬─simpleLinearRegression(trip_distance, total_amount)─┐ │ 2009 │ (2.553562453857034,3 year, stochasticLinearRegressionState(total_amount, trip_distance) AS model FROM trips WHERE <...> GROUP BY year Ok. 39 / 62 Apply several trained models SELECT evalMLMethod(model, trip_distance), total_amount
    0 码力 | 64 页 | 1.38 MB | 1 年前
    3
  • pdf文档 3. Sync Clickhouse with MySQL_MongoDB

    every day…… Possible Solutions 4. CollapsingMergeTree ● FINAL is slow ● GROUP BY id HAVING sum(sign)>0 ○ Need to use GROUP BY in every query ○ Not suitable for multi-column primary key Our Solution:
    0 码力 | 38 页 | 7.13 MB | 1 年前
    3
  • pdf文档 2. Clickhouse玩转每天千亿数据-趣头条

    select column1, column2 from table where column=value 凡是涉及group by, order by, distinct, join这样的SQL内存占用不再是O(1) 解决: 1:max_bytes_before_external_group_by 2:max_bytes_before_external_sort 3:uniq / uniqCombined
    0 码力 | 14 页 | 1.10 MB | 1 年前
    3
  • pdf文档 2. 腾讯 clickhouse实践 _2019丁晓坤&熊峰

    ARRAY JOIN Goals GROUP BY key ORDER BY value DESC LIMIT 10 SELECT play_times_key AS key, sum(play_times_value) AS value FROM wegame ARRAY JOIN play_times_key, play_times_value GROUP BY key ORDER BY
    0 码力 | 26 页 | 3.58 MB | 1 年前
    3
共 15 条
  • 1
  • 2
前往
页
相关搜索词
ClickHouseonKuberneteskubernetesinProductionclickhouseatXimalayaforShanghaiMeetup2019PDFMachineLearningwithSyncClickhouseMySQLMongoDB玩转每天千亿数据头条腾讯实践丁晓坤熊峰
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩