积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(9)ClickHouse(9)

语言

全部中文(简体)(4)俄语(3)英语(2)

格式

全部PDF文档 PDF(8)PPT文档 PPT(1)
 
本次搜索耗时 0.011 秒,为您找到相关结果约 9 个.
  • 全部
  • 数据库
  • ClickHouse
  • 全部
  • 中文(简体)
  • 俄语
  • 英语
  • 全部
  • PDF文档 PDF
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • ppt文档 ClickHouse: настоящее и будущее

    инфраструктуре заказчика • На личном ноутбуке ClickHouse доступен под разные платформы: • x86_64, aarch64 (ARM), PowerPC 64, RISC-V • Linux, FreeBSD, mac OS ClickHouse — настоящий open-source 10 • Исходники cloud-native ClickHouse. Кстати, а что это значит? Сложность разделения ресурсов 21 • Разделение CPU и IO между запросами • Приоритеты запросов • Memory overcommit Недостаточные возможности по интеграции
    0 码力 | 32 页 | 2.62 MB | 1 年前
    3
  • pdf文档 ClickHouse: настоящее и будущее

    инфраструктуре заказчика • На личном ноутбуке ClickHouse доступен под разные платформы: • x86_64, aarch64 (ARM), PowerPC 64, RISC-V • Linux, FreeBSD, mac OS ClickHouse — настоящий open-source 10 • Исходники cloud-native ClickHouse. Кстати, а что это значит? Сложность разделения ресурсов 21 • Разделение CPU и IO между запросами • Приоритеты запросов • Memory overcommit Недостаточные возможности по интеграции
    0 码力 | 32 页 | 776.70 KB | 1 年前
    3
  • pdf文档 6. ClickHouse在众安的实践

    first_policy_premium • ... • phone_flag • ha_flag • ... clickhouse集群配置 • 阿里云ECS * 6,生产环境集群 • CPU: • Intel(R) Xeon(R) CPU E5-2682 v4 @ 2.50GH • 12 cores 24 processors • 内存: 96GB • 硬盘: 1TB 高效云盘,最大IO吞吐量 140MBps 花费~250s,性能瓶颈在硬盘io (iostat util 100%) • 第二次执行,大部分数据已经在内存里 花费~18s,性能瓶颈在cpu (top cpu usage ~1447%) • 两次运行的比较: Metric First run Second run top %CPU ~116% ~1447% Peak Memory 1.84GiB 1.91GiB iostat %util 100% > 18s ,~3.8x • ToDos • 优化数据导入流程 • 支持多分区,支持指定主键 • 常用字段加热 29 常用分析性能的命令分享 • linux命令 • top:查看系统cpu使用率,内存使用率等 • iotop:查看系统进程占用io情况 • iostat -dmx 1: 查看磁盘io使用情况,每秒更新 • Clickhouse命令: • set send_logs_level
    0 码力 | 28 页 | 4.00 MB | 1 年前
    3
  • pdf文档 8. Continue to use ClickHouse as TSDB

    息预测股价涨跌 不断的汇总日成交量从 而制定商业规划 Why we choose it 不断收集CPU、 Memory等系统指标预 测系统未来趋势 不断收集市场变化信 息预测股价涨跌 不断的汇总日成交量从 而制定商业规划 Why we choose it 不断收集CPU、 Memory等系统指标预 测系统未来趋势 不断收集市场变化信 息预测股价涨跌 不断的汇总日成交量从 PARTITION BY toYYYYMM(Time) ORDER BY (Name, Time, Age, ...); ► Column-Orient Model How we do CPU : Intel Skylake 8 core Memory : 64 GB Disk : 500GB SSD Data Set : TSBS, 12 Hours, 40000 Drivers Rows ► Column-Orient Model How we do :) SELECT value FROM benchmark.tags WHERE (metric_name = 'cpu-usage_user') AND ((created_at >= '2016-01-01 08:00:00') AND (created_at <= '2016-01-01 09:00:00'))
    0 码力 | 42 页 | 911.10 KB | 1 年前
    3
  • pdf文档 Тестирование ClickHouse которого мы заслуживаем

    › Кэш OS › Уровень RAID и состояние диска › Положение данных на диске Память: › Аллокатор › Объем CPU: › Количество ядер › Размер кэшей › Планирование https://cdn-images-1.medium.com/max/2600/1*l0rkhXUnMtGFXrRqcaEcoA которого мы заслуживаем Как измерять производительность › Исключить влияние диска и кэшей › Фиксировать CPU и память › Подбирать условия останова › Проверять запросы дольше 10ms › Использовать реальные данные TeamCity, но проще › Запуск произвольного кода на python (задачи) › Фиксирование характеристик хостов (CPU, RAM, OS) › Устойчивость к выпадению хостов › Хранение и поиск артефактов › Запуск задач по таймеру
    0 码力 | 84 页 | 9.60 MB | 1 年前
    3
  • pdf文档 蔡岳毅-基于ClickHouse+StarRocks构建支撑千亿级数据量的高可用查询引擎

    广州站 ClickHouse 的特点 优点: 1. 数据压缩比高,存储成本相对非常低; 2. 支持常用的SQL语法,写入速度非常快,适用于大量的数据更新; 3. 依赖稀疏索引,列式存储,cpu/内存的充分利用造就了优秀的计算能力, 并且不用考虑左侧原则; 缺点: 1. 不支持事务,没有真正的update/delete; 2. 不支持高并发,可以根据实际情况修改qps相关配置文件; ClickHouse应用小结 • 数据导入之前要评估好分区字段; • 数据导入时根据分区做好Order By; • 左右表join的时候要注意数据量的变化; • 是否采用分布式; • 监控好服务器的cpu/内存波动/`system`.query_log; • 数据存储磁盘尽量采用ssd; • 减少数据中文本信息的冗余存储; • 特别适用于数据量大,查询频次可控的场景,如数据分析,埋点日志系统;
    0 码力 | 15 页 | 1.33 MB | 1 年前
    3
  • pdf文档 2. Clickhouse玩转每天千亿数据-趣头条

    问题: 1:内存限制,对于一些大的查询会出现内存不够问题 2:存储限制,随着表越来多,磁盘报警不断 3:cpu限制 64G对于一些大表(每天600亿+)的处理,很容易报错,虽然有基于磁盘解决方案,但是会影响速度 clickhouse的数据目录还不支持多个数据盘,单块盘的大小限制太大 cpu需要根据实际情况而定 解决: 1:机器的内存推荐128G+ 2:采用软连接的方式,把不同的表分布到不同的盘上面,这样一台机器可以挂载更多的盘
    0 码力 | 14 页 | 1.10 MB | 1 年前
    3
  • pdf文档 ClickHouse on Kubernetes

    requests: memory: "512Mi" cpu: "500m" limits: memory: "512Mi" cpu: "500m" # Etc. Operator = deployment + monitoring + operation
    0 码力 | 29 页 | 3.87 MB | 1 年前
    3
  • pdf文档 2. 腾讯 clickhouse实践 _2019丁晓坤&熊峰

    Clickhouse 的应用实践 iData 目录 部署与监控管理 一切以用户价值为依归 3 1 4 部署与监控管理 1 高内存,廉价存储: 单机配置: Memory128G CPU核数24 SATA20T,RAID5 万兆网卡 一切以用户价值为依归 5 部署与监控管理 1 生产环境部署方案: Distributed Table Replica1Replica1 Replica1Replica1
    0 码力 | 26 页 | 3.58 MB | 1 年前
    3
共 9 条
  • 1
前往
页
相关搜索词
ClickHousefinalpdf众安实践ContinuetouseasTSDBclickhouse蔡岳毅基于StarRocks构建支撑千亿数据数据量可用查询引擎Clickhouse玩转每天头条kubernetes腾讯2019丁晓坤熊峰
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩