 ClickHouse在B站海量数据场景的落地实践Cluster-n 。。。 ClickHouse Yuuni 定制开发的 ClickHouse-JDBC 与ClickHouse兼容的 HTTP 接口 请求管理/流量控制 查询缓存 查询分发器 查询处理器 ClickHouse 监控管理平台 元数据管理 库表管理 权限管理 埋点分析 报表平台 HDFS/Hive Kafka/Databus 离线接入 (Rider/Spark/WaterDrop)0 码力 | 26 页 | 2.15 MB | 1 年前3 ClickHouse在B站海量数据场景的落地实践Cluster-n 。。。 ClickHouse Yuuni 定制开发的 ClickHouse-JDBC 与ClickHouse兼容的 HTTP 接口 请求管理/流量控制 查询缓存 查询分发器 查询处理器 ClickHouse 监控管理平台 元数据管理 库表管理 权限管理 埋点分析 报表平台 HDFS/Hive Kafka/Databus 离线接入 (Rider/Spark/WaterDrop)0 码力 | 26 页 | 2.15 MB | 1 年前3
 蔡岳毅-基于ClickHouse+StarRocks构建支撑千亿级数据量的高可用查询引擎ClickHouse集群架构 Ø 虚拟集群最少两台机器在不同的机房; Ø 数据独立,多写,相互不干扰; Ø 数据读取通过应用程序做负载平衡; Ø 灵活创建不同的虚拟集群用于适当的场合; Ø 随时调整服务器,新增/缩减服务器; 分布式: k8s的集群式部署 全球敏捷运维峰会 广州站 采用ClickHouse后平台的查询性能 system.query_log表,记录已经 执行的查询记录 query:执行的详细SQL,查询相关记录可以 ClickHouse应用小结 • 数据导入之前要评估好分区字段; • 数据导入时根据分区做好Order By; • 左右表join的时候要注意数据量的变化; • 是否采用分布式; • 监控好服务器的cpu/内存波动/`system`.query_log; • 数据存储磁盘尽量采用ssd; • 减少数据中文本信息的冗余存储; • 特别适用于数据量大,查询频次可控的场景,如数据分析,埋点日志系统;0 码力 | 15 页 | 1.33 MB | 1 年前3 蔡岳毅-基于ClickHouse+StarRocks构建支撑千亿级数据量的高可用查询引擎ClickHouse集群架构 Ø 虚拟集群最少两台机器在不同的机房; Ø 数据独立,多写,相互不干扰; Ø 数据读取通过应用程序做负载平衡; Ø 灵活创建不同的虚拟集群用于适当的场合; Ø 随时调整服务器,新增/缩减服务器; 分布式: k8s的集群式部署 全球敏捷运维峰会 广州站 采用ClickHouse后平台的查询性能 system.query_log表,记录已经 执行的查询记录 query:执行的详细SQL,查询相关记录可以 ClickHouse应用小结 • 数据导入之前要评估好分区字段; • 数据导入时根据分区做好Order By; • 左右表join的时候要注意数据量的变化; • 是否采用分布式; • 监控好服务器的cpu/内存波动/`system`.query_log; • 数据存储磁盘尽量采用ssd; • 减少数据中文本信息的冗余存储; • 特别适用于数据量大,查询频次可控的场景,如数据分析,埋点日志系统;0 码力 | 15 页 | 1.33 MB | 1 年前3
 6. ClickHouse在众安的实践ClickHouse 百亿数据性能测试与优化 • 性能瓶颈在硬盘io,实验验证 • 数据分布在三台服务器上 • 执行涉及到全表数据的查询(cold data,从硬盘读取),处理速度为~24.28million rows/s • 只用到三块硬盘的io:3*140=420mb/s • 数据分布在六台服务器上 • 执行涉及到全表数据的查询(cold data,从硬盘读取),处理速度为~43.60million0 码力 | 28 页 | 4.00 MB | 1 年前3 6. ClickHouse在众安的实践ClickHouse 百亿数据性能测试与优化 • 性能瓶颈在硬盘io,实验验证 • 数据分布在三台服务器上 • 执行涉及到全表数据的查询(cold data,从硬盘读取),处理速度为~24.28million rows/s • 只用到三块硬盘的io:3*140=420mb/s • 数据分布在六台服务器上 • 执行涉及到全表数据的查询(cold data,从硬盘读取),处理速度为~43.60million0 码力 | 28 页 | 4.00 MB | 1 年前3
 3. 数仓ClickHouse多维分析应用实践-朱元因此采用可视化同步工具kettle. 先将oracle数据平台维度信息以及相关主题清单数据同步至clichouse数据 仓库 Oracle数据平台 • 通过kettle每天 定时导出文件至 本地 Etl服务器 • 通过clickhouse- client将文本导 入ck数据库 clickhouse数据库 数 仓 建 设 01 ck数仓数据模型采用星型模型搭建 02 数 仓 建 设 – 维度表0 码力 | 14 页 | 3.03 MB | 1 年前3 3. 数仓ClickHouse多维分析应用实践-朱元因此采用可视化同步工具kettle. 先将oracle数据平台维度信息以及相关主题清单数据同步至clichouse数据 仓库 Oracle数据平台 • 通过kettle每天 定时导出文件至 本地 Etl服务器 • 通过clickhouse- client将文本导 入ck数据库 clickhouse数据库 数 仓 建 设 01 ck数仓数据模型采用星型模型搭建 02 数 仓 建 设 – 维度表0 码力 | 14 页 | 3.03 MB | 1 年前3
 2. 腾讯 clickhouse实践 _2019丁晓坤&熊峰为什么选用ClickHouse l 平台在ClickHouse上的使用 16 业务应用实践 iData 2 腾讯游戏 数据化驱动服务 场景视图: TGlog 服务端采集 腾讯游戏 服务器 腾讯游戏 移动客户端 微信 小游戏 WEB 游戏 海外 游戏 TDM-SDK 客户端采集 特性 采集 大数据基础 PaaS平台 游戏 营销活动 Dbbinlog 数据库采集0 码力 | 26 页 | 3.58 MB | 1 年前3 2. 腾讯 clickhouse实践 _2019丁晓坤&熊峰为什么选用ClickHouse l 平台在ClickHouse上的使用 16 业务应用实践 iData 2 腾讯游戏 数据化驱动服务 场景视图: TGlog 服务端采集 腾讯游戏 服务器 腾讯游戏 移动客户端 微信 小游戏 WEB 游戏 海外 游戏 TDM-SDK 客户端采集 特性 采集 大数据基础 PaaS平台 游戏 营销活动 Dbbinlog 数据库采集0 码力 | 26 页 | 3.58 MB | 1 年前3
共 5 条
- 1













