蔡岳毅-基于ClickHouse+StarRocks构建支撑千亿级数据量的高可用查询引擎全球敏捷运维峰会 广州站 基于ClickHouse+StarRocks 构建支撑千亿级数据量的高可用查询引擎 演讲人:蔡岳毅 全球敏捷运维峰会 广州站 1. 为什么选择ClickHouse/StarRocks; 2. ClickHouse/StarRocks的高可用架构; 3. 如何合理的应用ClickHouse的优点,StarRocks 如何来补充ClickHouse 的短板; 的短板; 4. ClickHouse的调优,运维介绍; 5. 应用总结; 全球敏捷运维峰会 广州站 根据实际业务场景需要来选择 1. 不固定的查询条件,不固定的汇总条件; 2. 数据量日益增量,每天要更新的数据量也不断增大; 3. 业务场景不断增多,涉及面越来越广; 4. 需要保证高可用并秒出; 5. 从Sql,Es, CrateDB, Kylin,Ingite,MongoDB,Hbase ase 不断的研究,实践; 全球敏捷运维峰会 广州站 ClickHouse 的特点 优点: 1. 数据压缩比高,存储成本相对非常低; 2. 支持常用的SQL语法,写入速度非常快,适用于大量的数据更新; 3. 依赖稀疏索引,列式存储,cpu/内存的充分利用造就了优秀的计算能力, 并且不用考虑左侧原则; 缺点: 1. 不支持事务,没有真正的update/delete; 2. 不0 码力 | 15 页 | 1.33 MB | 1 年前3
2. 腾讯 clickhouse实践 _2019丁晓坤&熊峰Analysis 数据报表 多 维 聚 合 iData大数据分析引擎 TGMars TGSpark & Storage 大数据仓库 Hadoop Data Lake 计算引擎 MR & Spark Data Warehouse OLTP Big Data Analysis 多 维 聚 合 iData New 超融合OLAP 大数据分析 引擎TGMars 多 维 提 取 关 联 分 iData 2 如何使用ClickHouse ClickHouse集群 TGMARS DATA 消息中间件 RDBMS(MYSQL) 数据仓库(TDW) 画像服务 BI服务 查询服务 ETL工具 一切以用户价值为依归 25 业务应用实践 iData 2 • 支持更多的机器学习算法 • 支持explain 查看整个sql 执行计划 • 集群管理 一切以用户价值为依归 Future0 码力 | 26 页 | 3.58 MB | 1 年前3
ClickHouse在B站海量数据场景的落地实践Map隐式列将每个Key存储为独⽴列 v Map隐式列查询时只读取需要的隐式列 Bulkload v 原⽣写⼊⽅式消耗ClickHouse Server资源,影响查询性能 v 实时写⼊任务长期占⽤资源,故障恢复的时间和运维成本较⾼ v 基于中间存储的Bulkload⽅案降低ClickHouse Server压⼒ Bulkload v 基于中间存储的Bulkload可以降低ClickHouse Server压⼒0 码力 | 26 页 | 2.15 MB | 1 年前3
2. Clickhouse玩转每天千亿数据-趣头条基于storm的实时指标的计算存在的问题 1:指标口径(SQL) -> 实时任务 2:数据的回溯 3:稳定性 业务背景 什么是我们需要的? 1:实时指标SQL化 2:数据方便回溯,数据有问题,方便恢复 3:运维需要简单 4:计算要快,在一个周期内,要完成所有的指标的计算 集群现状 100+台32核128G 部分复杂累时查询30S内完成 集群现状 我们遇到的问题 关于机器的配置 早期集群机器配置16核64G0 码力 | 14 页 | 1.10 MB | 1 年前3
2. ClickHouse MergeTree原理解析-朱凯能源大数据 l 购售电平台 l …… l 智慧组织 l 智慧城市 l 智慧产业 l …… EDT 企业级大数据平台 BAS区块链企业应用服务平台 ECP 企 业 云 平 台 服务(咨询、实施、运维、定制开发、系统集成……) 面向 集团企业 面向 能源行业 面向 社会治理 公司主要客户 海尔集团 东风汽车 中信重工 首创经中 河南省人民医院 宏发股份 国家电网 国家电投集团0 码力 | 35 页 | 13.25 MB | 1 年前3
4. ClickHouse在苏宁用户画像场景的实践误差率 精确去重计数性能测试 6 ClickHouse在苏宁使用场景 OLAP平台存储引擎 -- 存储时序数据、cube加速数据,应用亍高基数查询、精确去重场景。 运维监控 -- 实时聚合分析监控数据,主要使用物化视图技术。 用户画像场景 -- 标签数据的存储、用户画像查询引擎。 7 Contents 苏宁如何使用ClickHouse0 码力 | 32 页 | 1.47 MB | 1 年前3
3. 数仓ClickHouse多维分析应用实践-朱元数据链路长 现状 即席查询性能差 数据压缩率低 需求响应慢 02 数据架构 数据同步ck 01 1,基于公司对数据要求为T+1 2. 基于现有开发人员水平及成本 因此采用可视化同步工具kettle. 先将oracle数据平台维度信息以及相关主题清单数据同步至clichouse数据 仓库 Oracle数据平台 • 通过kettle每天 定时导出文件至 本地 Etl服务器 主题事实清单表采用引擎MergeTree. 同步策略: 每日从 oracle数据平台增量同步到ck数仓. 数 仓 建 设 – 对外数据 目前对外开放是主题事实清单表+维度表 封装成一个视图,类 似如下 数 据 展 示 + 多 维 分析 采用开源报表系统davinci 地址: https://github.com/edp963/davinci 03 1. Memory limit (for query) exceeded0 码力 | 14 页 | 3.03 MB | 1 年前3
6. ClickHouse在众安的实践模型、 算法 模版 机器学习平台 Antron 机器人平台 X-Insight 数据洞察平台 X-Zatlas 数据可视化平台 模板 X-BI 数据探索平台 图像分类 平台 OCR工具 链 X-Farm 异构数据治理、协同平台 元数据管理/数据集市 数据权限管理 | 大数据、流数据建模 | 数据/模型生命周期管理 资源调度 业务系统 开 发 工 具 基 础 设 施0 码力 | 28 页 | 4.00 MB | 1 年前3
共 8 条
- 1













