蔡岳毅-基于ClickHouse+StarRocks构建支撑千亿级数据量的高可用查询引擎全球敏捷运维峰会 广州站 基于ClickHouse+StarRocks 构建支撑千亿级数据量的高可用查询引擎 演讲人:蔡岳毅 全球敏捷运维峰会 广州站 1. 为什么选择ClickHouse/StarRocks; 2. ClickHouse/StarRocks的高可用架构; 3. 如何合理的应用ClickHouse的优点,StarRocks 如何来补充ClickHouse 的短板;0 码力 | 15 页 | 1.33 MB | 1 年前3
4. ClickHouse在苏宁用户画像场景的实践18 ClickHouse替换ES存储标签数据 ClickHouse Manager负责ClickHouse集群管理、元数据管理以及节点负载协调 tag-generate负责标签数据构建,保存到HDFS(MySQL中存储标签配置信息) tag-loader向ClickHouse发送从HDFS导入标签数据的sql to-ch-sql模块,将用户画像查询条件转换为ClickHouse user_list 8 10 11 12 27 用户画像场景3—用户ID清单—示例 画像条件 查询SQL 28 用户画像新架构的优势 每个标签的数据可以幵行构建,加快标签数据生产速度。 HDFS文件幵发导入ClickHouse,加快标签数据的就绪速度。 查询请求平均响应时长在2秒以下,复杂查询在10秒内。 支持标签0 码力 | 32 页 | 1.47 MB | 1 年前3
ClickHouse在B站海量数据场景的落地实践ClickHouse存储成本为ES的1/3 日志 v ClickHouse中采⽤分表,统⼀schema的设计 v ⽇志查询采⽤类似ES语法,降低⽤户迁移成本 用户行为数据分析 概述 v 基于ClickHouse构建B站⽤户⾏为数据分析产品:北极星 v 行为数据分析平台主要以下功能模块: 事件分析 v 海量埋点事件数据,⽇增数据千亿级。 v ⽤户⾏为事件的多维度分析场景。 v 事件包含公共属性和私有属性,均可作过滤和聚合维度。0 码力 | 26 页 | 2.15 MB | 1 年前3
2. ClickHouse MergeTree原理解析-朱凯2019.10 朱 凯 远光软件 大数据事业部/平台开发部 总经理 资深架构师,腾讯云TVP专家 10多年IT从业经验,精通Java、Nodejs等语言方向 著有: 《企业级大数据平台构建:架构与实现》、 《ClickHouse原理解析与开发实战》(连载写作中) 珠海总部园 区占地面积 6 万平方米 珠海、北京、武汉 3 研发中心 36 个 分支机构 4 多名员工 下属公司0 码力 | 35 页 | 13.25 MB | 1 年前3
共 4 条
- 1













