ClickHouse在B站海量数据场景的落地实践⽹络稳定性影响,且传输成本较⾼ v 直达ClickHouse的Bulkload稳定性,性能都更佳 Unique Engine v ⽬标:⽀持UpSert,Delete操作,提升查询性能 v 设计:delete on insert Unique Engine v write-write冲突依靠table level lock控制 v write-merge冲突: Unique Engine 统⼀scheme⽀持 日志 v ClickHouse较ES写⼊吞吐量提升近10倍 v ClickHouse存储成本为ES的1/3 日志 v ClickHouse中采⽤分表,统⼀schema的设计 v ⽇志查询采⽤类似ES语法,降低⽤户迁移成本 用户行为数据分析 概述 v 基于ClickHouse构建B站⽤户⾏为数据分析产品:北极星 v 行为数据分析平台主要以下功能模块: 事件分析0 码力 | 26 页 | 2.15 MB | 1 年前3
2. ClickHouse MergeTree原理解析-朱凯灵活 快速 自助 洞察 预警 消息 交互 Agenda. 数据分区 01 / 一级索引&二级索引 02 / 数据存储 03 / 数据标记 04 / 表引擎 表引擎,是ClickHouse设计实现中的一大特色。可以说正是由表引擎,决定了一张 数据表最终的性格,它拥有何种特性、数据以何种形式被存储以及如何被加载。 ClickHouse拥有非常庞大的表引擎体系,截至到目前(19.14.6),共拥有合并树、0 码力 | 35 页 | 13.25 MB | 1 年前3
4. ClickHouse在苏宁用户画像场景的实践Array Container Run Container Bitmap Container 10 RoaringBitmap原理介绍 11 丌仅数据结构设计精巧,而且还有 很多高效的Bitmap计算函数。 稀疏数据,劢态分配 最大存储:4096元素 最大空间:8KB 连续数据,劢态分配 最大存储:65536元素 最大空间:128KB0 码力 | 32 页 | 1.47 MB | 1 年前3
共 3 条
- 1













