蔡岳毅-基于ClickHouse+StarRocks构建支撑千亿级数据量的高可用查询引擎全球敏捷运维峰会 广州站 基于ClickHouse+StarRocks 构建支撑千亿级数据量的高可用查询引擎 演讲人:蔡岳毅 全球敏捷运维峰会 广州站 1. 为什么选择ClickHouse/StarRocks; 2. ClickHouse/StarRocks的高可用架构; 3. 如何合理的应用ClickHouse的优点,StarRocks 如何来补充ClickHouse 的短板; 监控好服务器的cpu/内存波动/`system`.query_log; • 数据存储磁盘尽量采用ssd; • 减少数据中文本信息的冗余存储; • 特别适用于数据量大,查询频次可控的场景,如数据分析,埋点日志系统; 全球敏捷运维峰会 广州站 StarRocks应用小结 • 发挥分布式的优势,要提前做好分区字段规划; • 支持各种join,语法会相对clickhouse简单很多; • 一个sql可以多处用;0 码力 | 15 页 | 1.33 MB | 1 年前3
4. ClickHouse在苏宁用户画像场景的实践苏宁科技集团.大数据中心.杨兆辉 1 关亍我 苏宁科技集团大数据中心架构师 曾就职亍中兴通讯10+years ,从事大规模分布式系统研发 10+years C++、Java、Go编程经验,熟悉大数据架构、解决方案 ClickHouse Contributor Github: https://github 18 ClickHouse替换ES存储标签数据 ClickHouse Manager负责ClickHouse集群管理、元数据管理以及节点负载协调 tag-generate负责标签数据构建,保存到HDFS(MySQL中存储标签配置信息) tag-loader向ClickHouse发送从HDFS导入标签数据的sql to-ch-sql模块,将用户画像查询条件转换为ClickHouse 采用AB表切换方式,避免查询和写入的冲突,标签数据表以日期结尾命名。 通过重建分布式表迚行AB表切换,指向丌同日期的标签数据表。 通过增加标签数据表的副本数,提升幵发性能。 21 用户画像系统常见应用场景 22 丼个栗子: “双11” 就要到了,需要发放10万张家电类优惠券迚行促销: 预估人数 人群画像 用户ID清单 用户画像场景1—预估人数 输入条件 返回结果0 码力 | 32 页 | 1.47 MB | 1 年前3
2. ClickHouse MergeTree原理解析-朱凯2019.10 朱 凯 远光软件 大数据事业部/平台开发部 总经理 资深架构师,腾讯云TVP专家 10多年IT从业经验,精通Java、Nodejs等语言方向 著有: 《企业级大数据平台构建:架构与实现》、 《ClickHouse原理解析与开发实战》(连载写作中) 珠海总部园 区占地面积 6 万平方米 珠海、北京、武汉 3 研发中心 36 个 分支机构 4 多名员工 下属公司 购售电平台 l …… l 智慧组织 l 智慧城市 l 智慧产业 l …… EDT 企业级大数据平台 BAS区块链企业应用服务平台 ECP 企 业 云 平 台 服务(咨询、实施、运维、定制开发、系统集成……) 面向 集团企业 面向 能源行业 面向 社会治理 公司主要客户 海尔集团 东风汽车 中信重工 首创经中 河南省人民医院 宏发股份 国家电网 国家电投集团 华能集团0 码力 | 35 页 | 13.25 MB | 1 年前3
6. ClickHouse在众安的实践5亿,销售保单33.3亿张。 CHAPTER 报表系统的现状 01 数据分析的最直观表现形式:报表 报表≠数据驱动 每天被访问超过10次的报表寥寥无几 传统报表访问往往是静态的、高聚合、低频、表单式的 集智平台可视化交互分析 数据加工的链路与数据价值发现 竞争优势 分析成熟度 洞察与应对 预测与行动 源数据 数据清洗 标准报表 OLAP系统 商务智能(BI) 机器学习建模 人工智能优化 数据探索平台 图像分类 平台 OCR工具 链 X-Farm 异构数据治理、协同平台 元数据管理/数据集市 数据权限管理 | 大数据、流数据建模 | 数据/模型生命周期管理 资源调度 业务系统 开 发 工 具 基 础 设 施 模型 反馈 智能应用 开放与敏捷 • 大数据、流数据统一建模管理 • 垂直方向行业模板,简化开发过程 • 多语言多runtime支持,Bring your 个,数据存 储和查询以及分析的压力就会很大,原有系统使用es来保存用户标签 数据。 保单表 用户表 用户行为表 ODPS ES 用户标签表 痛点 • 数据查询慢:每个查询需要5~10分钟; • 数据更新慢:更新数据可能需要数天时间; • 不灵活:用户有新标签需求时,需要提需求给标签开发人员排期开发 需求,开发人员开发完再更新到系统中,这时离需求提出可能已经过 去几天,无法及时给到业务人员反馈。0 码力 | 28 页 | 4.00 MB | 1 年前3
ClickHouse在B站海量数据场景的落地实践ClickHouse存储成本为ES的1/3 日志 v ClickHouse中采⽤分表,统⼀schema的设计 v ⽇志查询采⽤类似ES语法,降低⽤户迁移成本 用户行为数据分析 概述 v 基于ClickHouse构建B站⽤户⾏为数据分析产品:北极星 v 行为数据分析平台主要以下功能模块: 事件分析 v 海量埋点事件数据,⽇增数据千亿级。 v ⽤户⾏为事件的多维度分析场景。 v 事件包含公共属性和私有属性,均可作过滤和聚合维度。0 码力 | 26 页 | 2.15 MB | 1 年前3
2. 腾讯 clickhouse实践 _2019丁晓坤&熊峰大数据分析PaaS 实时 分析 多维 分析 画像 分析 … DataMore 大数据应用PaaS 实时 决策 任务 系统 … 排 行 榜 大数据应用 SaaS系统 iData 用户画像 DataMore 月光宝盒 DataMore 任务系统 iData 数据可视化 游 谱 游戏说 神秘 商店 iData 多维提取 … 游戏数据 驱动场景 潘多拉 社交与功能 基于位图索引和行式内容存储 分布式画像引擎 基于位图索引和列式内容存储 多维 分析 跟踪 分析 下钻 分析 透视 分析 画像 分析 一切以用户价值为依归 19 业务应用实践 iData 2 旧画像系统 Block 1 Block 2 Block … Storage Scheduler Data Stats Gather SQL Parser Query Optimizer0 码力 | 26 页 | 3.58 MB | 1 年前3
8. Continue to use ClickHouse as TSDB不断的汇总日成交量从 而制定商业规划 Why we choose it 不断收集CPU、 Memory等系统指标预 测系统未来趋势 不断收集市场变化信 息预测股价涨跌 不断的汇总日成交量从 而制定商业规划 Why we choose it 不断收集CPU、 Memory等系统指标预 测系统未来趋势 不断收集市场变化信 息预测股价涨跌 不断的汇总日成交量从 而制定商业规划 不断收集温度,坐标,方向0 码力 | 42 页 | 911.10 KB | 1 年前3
3. 数仓ClickHouse多维分析应用实践-朱元每日从 oracle数据平台增量同步到ck数仓. 数 仓 建 设 – 对外数据 目前对外开放是主题事实清单表+维度表 封装成一个视图,类 似如下 数 据 展 示 + 多 维 分析 采用开源报表系统davinci 地址: https://github.com/edp963/davinci 03 1. Memory limit (for query) exceeded 解决:通过在users0 码力 | 14 页 | 3.03 MB | 1 年前3
2. Clickhouse玩转每天千亿数据-趣头条(timestamp, eventType) or order by (eventType, timestamp) 业务场景 1:趣头条和米读的上报数据是按照”事件类型”(eventType)进行区分 2:指标系统分”分时”和”累时”指标 3:指标的一般都是会按照eventType进行区分 select count(1) from table where dt='' and timestamp>='' and0 码力 | 14 页 | 1.10 MB | 1 年前3
共 9 条
- 1













