2. ClickHouse MergeTree原理解析-朱凯[SAMPLE BY expr] [SETTINGS name=value, 省略...] 分区键 排序键 主键 index_granularity = 8192 索引粒度 MergeTree的存储结构 数据以分区的形式被组织 , PARTITION BY 各列独立存储, 按ORDER BY 排序 一级索引, 按PRIMARY Key 排序 数据分区 数据的分区规则 l 不指定分区键 作为分区 ID的取值。 l 使用其它类型 如果分区键取值既不属于整型,也不属于日期 类型,例如String、Float等。则通过128位Hash 算法取其Hash值作为分区ID的取值。 分区目录的命名规则 PartitionID_MinBlockNum_MaxBlockNum_Level • PartitionID 分区ID,无需多说,对于分区ID的规则在上一小节中已 经做过了详细的阐述。 ,那么计数n在单张MergeTree数据表内全局累加,n从1 开始,每当新创建一个分区目录时,计数n就会累积加1 。对于一个新的分区目录而言,MinBlockNum与 MaxBlockNum取值一样,同等于n。 • Level 合并的层级,可以理解为某个分区被合并过的次数。 Level计数与BlockNum有所不同,它并不是全局累加的。 对于每一个新创建的分区目录而言,其初始值均为0。之 后,以分区为单位,如果相同分区发生合并动作,则在相0 码力 | 35 页 | 13.25 MB | 1 年前3
2. 腾讯 clickhouse实践 _2019丁晓坤&熊峰ClickHouse 应用实践 丁晓坤 & 熊峰 一切以用户价值为依归 2 • Clickhouse 的部署与监控管理 • Clickhouse 的应用实践 iData 目录 部署与监控管理 一切以用户价值为依归 3 1 4 部署与监控管理 1 高内存,廉价存储: 单机配置: Memory128G CPU核数24 SATA20T,RAID5 万兆网卡 一切以用户价值为依归 Shard02 Shard03 Load Balancing 一切以用户价值为依归 6 部署与监控管理 1 线性平滑扩容: 扩容: 1.安装新部署新的shard分片机器 2.新shard上创建表结构 3.批量修改当前集群的配置文件增加新的分片 4.名字服务添加节点 一切以用户价值为依归 7 部署与监控管理 1 大批量,少批次 WriteModel BatchSize RowLengt0 码力 | 26 页 | 3.58 MB | 1 年前3
2. Clickhouse玩转每天千亿数据-趣头条1:内存限制,对于一些大的查询会出现内存不够问题 2:存储限制,随着表越来多,磁盘报警不断 3:cpu限制 64G对于一些大表(每天600亿+)的处理,很容易报错,虽然有基于磁盘解决方案,但是会影响速度 clickhouse的数据目录还不支持多个数据盘,单块盘的大小限制太大 cpu需要根据实际情况而定 解决: 1:机器的内存推荐128G+ 2:采用软连接的方式,把不同的表分布到不同的盘上面,这样一台机器可以挂载更多的盘 最新版本的”冷热数据分离”特性,曲线救国 inserts. 分析: 1:直接落盘,异步merge - background_pool_size 2:一个Insert Request,涉及N个分区的数据,在磁盘上就会生成N个数据目录,merge跟不上 3:一个目录,一个zxid,zookeeper集群的压力大,插入速度严重变慢 解决: 1:增大background_pool_size治标不治本 2:设置分区的时候需要思考,数据的特性需要了解0 码力 | 14 页 | 1.10 MB | 1 年前3
4. ClickHouse在苏宁用户画像场景的实践Bitmap位存储和位计算 每个bit位表示一个数字id,对亍40亿个的用户id,只需要40亿bit位, 约477m大小 = (4 * 109 / 8 / 1024 / 1024) 但是如果使用上述的数据结构存储单独一个较大数值的数字id,会造成空间上的浪费,例如 仅存储40亿一个数值也需要477m的空间。也就是说稀疏的Bitmap和稠密的占用空间相 同。通常会使用一种bitmap压缩算法迚行优化。 Array Container Run Container Bitmap Container 10 RoaringBitmap原理介绍 11 丌仅数据结构设计精巧,而且还有 很多高效的Bitmap计算函数。 稀疏数据,劢态分配 最大存储:4096元素 最大空间:8KB 连续数据,劢态分配 最大存储:65536元素 最大空间:128KB 用户画像平台可以从ES、Hbase、Redis查 询数据 痛点: 标签导入到ES的时间过长,需要等待各种业 务数据准备就绪,才能迚行关联查询。 新增戒者修改标签,丌能实时迚行,涉及到 ES文档结构的变化。 ES对资源消耗比较大,属亍豪华型配置。 ES的DSL诧法对用户丌太友好,用户学习成 本高。 Kafka Flink 18 ClickHouse替换ES存储标签数据0 码力 | 32 页 | 1.47 MB | 1 年前3
3. 数仓ClickHouse多维分析应用实践-朱元clickhouse数仓应用实践 演讲人:朱元 日期: 2019-10-20 所遇问题 目录 CONTENTS 现状背景 应用实践 01 数据链路长 现状 即席查询性能差 数据压缩率低 需求响应慢 02 数据架构 数据同步ck 01 1,基于公司对数据要求为T+1 2. 基于现有开发人员水平及成本 因此采用可视化同步工具kettle. 先将oracle数据平台维0 码力 | 14 页 | 3.03 MB | 1 年前3
ClickHouse在B站海量数据场景的落地实践ClickHouse在B站海量数据场景的落地实践 胡甫旺 哔哩哔哩OLAP平台 目录 vClickHouse在B站 v内核 v日志 v用户行为数据分析 vFuture Work vQ&A ClickHouse在B站 B站ClickHouse应用概况 v 近400个节点,30个集群 v ⽇均1.5+万亿条数据摄⼊ v ⽇均800+万次Select请求 v 应⽤场景包括(不限于):0 码力 | 26 页 | 2.15 MB | 1 年前3
共 6 条
- 1













